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NOMENCLATURE

B Target bearing angle (from north)

C Test level (nondimensional)

E Target elevation angle (from horizontal)
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P State error covariance matrix
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T Jacobian of transformation
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W Extrapolated value of S

w Pro ess noise vector

x S!ate vector

x. y. z East. north, vertical target position
_ Measurement vector

a. I. "y Defined Equations (4.9)

.At Time interval between filter cycles

61k K ronecker delta

t State error vector
t White driving noise vector

I Defined Equation (6.4)

0 Sensitivity criterion

o Data compression factor

f' Residual vector
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p Correlation coefficient

a Sta-idzrd deviation

r CorreLkt.9n time constant

0 Transition matrix

'I' Measurement noise shaping matrix

S2 Autocovariance matrix

w Frequency tor angular rate!)

SUBSCRIPTS

ACT Actual

C Cartesian

f Filter value

L L-neariied

M M.-neuver
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P Polar fspherica!)

p Predicued

pf Prefiltez

1. 2. 3 Position. velocity. acceleration

3D Three-dimensional
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{k/j) Conditional at time k given data through timej

(k At time k

El I Expected value

Note: A few - -et hiters used are defined locally.
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I. INTRODUCTION

This report is designed to give the reader an in-depth view of the development of an

adaptive. Kalman. target tracking filter. Emphasis is placed on the synthesis and analysis so
-s to convey the rationile for various design decisions. Since this filter was specifically de-
veloped for the imprewved (digital) MARK 68 Gunfir Control System (GFCS). the parametric
studies necessarily :effect values characteristic to such sysiems and their particular scenarios"
To the extent possible. however, the analysis has been generalized and deals in a broad
manner with the problem of tracking and predicting the state of a general target for fire
control or other purposes. The MARK 68 GFCS is in fact multifunctional as it must be
able to track and engage targets of all types. For the most part. the various technique:; used
in this filterpredictor are not new and can be found scattered througnout the literature. as
can be seen from the rather lengthy list of references. It is hoped. however. that this report
will be a useful rdfcrcce for others who will work in this area ir that it combines these
various state-of-the-ar; concepts and brings them to bear on this parti:ular applica;tion. Th-s
doca:ment summarizes work performcd to date and also indicates the directions that future
investigations might take.

Let us first consider th, bask functions performed by a gunfire control system. As
shown in Figure I. 1. the heart of the system is th-e so-called predictn'r-balli'tics loop. Es-

atially. the ballistics .ection gencrates the possible four-dimensional trajectories (or

TARGET

PREDICTION TIME
!$

SENSOR FILTER l PREDICTOR I  BALLISTICS

GUN ORRS

Figure 1. 1. Simple Functional Diagram of a Gunfire Control System

t dswowd trPui ikjkui -k1-7 vmb thr 3ARK 6x GIU_ wrp matwo -md vt-mano -aA he p-Uh. I a .1 Li:.s

ii~k



perhaps only terminal coordinates) of ownship's projectiles. The prediction section must

supply similar information about the target trajectory. The loop is then iteratively closed

by matching the spatial and temporJ coordinates of the projectile to the target to effect an

intercept- In this report. we will be dealing only with the "front end" of the system. i.e..

from the target to the predictor. Quite obviously the predictor is the ultimate product re-
qlird for the front end of t&r loop. ard this factor will be repeatedly stressed in this report.

If we had some other means of spxcifying the target trajectory. there would be no need for
the other eLments of the front end. In fact. of course the target trajectory is not directly

available to the fire control system. lnsead. the sensor tracks the target's current position.
superinrponing measurement error in so doing. The purpose of the filter then is to process

the noisy position measurements in such a manner as to estimate the parameters required
for the prediction model. Such parameters uryght include smooth current target position.
velocity, and acceleration.

it is assumed for this report that measurements are made of target position only since

rates (e.g. Doppler. gyros. tc.) are not currently available from GFCS sensors. IP wil! be
assumed that these measurements have bccn stabilized (i.e.. ownship angular motion removed)

and transformed to Cartesian coordinates. The implications of this transformation will be

considered at -ngth late; in the report. T7he use of stabilized coordinates, however, is
probably univeral sineon dt-s not want the target motion filter to have to deal with
ownship angu"lar motion. The origin of the coordinate system shall be a reference point on

ownship and common to all sensors. Tracking. filtering, and prediction will therefore bc
performed in ownship coordinates This "ownship coordinate system- is defined simply as

X _1 =Xttw - t$t) (1.1
I

whreXr(ty) and X,,{( t I rc the motion of the target and of ownship relative to some earth-

fixed or inertial reference frame.7 Whe-never it is necessary to transform to an inertial frame.
say for purpows of ballistic computations. or to account (if necessary) for ownship maneu-
vers. Equation ( I. I I and its derivativ-s would be uso-,. The reason for this choice of

Cartesian ownship coordinates for target filtering and prediction is simply that the motion
of most targets in a (;[:CS cenario is better behaved --or more closely linear-in this system

than in others. One must consider the fact that. if a hostile target is so close as to be in the

range of fire of a gua system, most likely the enitagmcnt is mutual in that both ownship
and target arc maneuvering rlanr to ea-ich other in order to effect their own fire control

strategy.

Let us now consider the nature of this problem from the point of view of error sources

and constraints on the solution method. The prediction error. that is the error in determin-
ing the projectile-targt iniercept point, basically relts from two (not necessarily independent)

ISC aix %ftMn 111 Ia4M lCZW It abr bcjiMots Of thir



sources: pre%;ictor modeling error and filtering or estimation error. Prediction modeling
error occurs because, not knowing the target strategy, an incorrect functional form of the
predictor is utilized. While we strive to construct a reasonable approximation for the actual
prediction model of the general unknown target, we can never do this exactly. Therefore,
even if we effected perfect filtering (i.e., perfect estimation of target parameters such as cur-
rent position and rates), we would nevertheless suffer prediction errors due to unaccountable
target maneuvers during the prediction time. Of course, even if target modeling were perfect.
there would remain estimation errors due to sensor measurement noise which would be
extrapolated from current time by the predictor. The dominant variable, an effect which
significantly determines the relative and absolute magnitude of these prediction errors, is the
prediction time. We shall see that prediction errors are magnified exponentially with in-
creased prediction time.

Target modeling error contributes to the filter error as well as the prediction error.
particularly for maneuvering targets. In general. a target will probably be maneuvering in
some unknown fashion-at least as far as the GFCS is concerned --when the target is in range
of ownship guns. There are several reasons for this. First. the target probably has a mission
to accomplish or it would not be there. The target has a particular strategy to achieve that
goal: and very often that goal and strategy are known to members of ownship crew. Due to
the complexity of this information. however, such knowledge is not used (except very
indirectly) by current gun-fire control systems. Examples of such targets are anti-ship
missiles that terminally home on their targets or other weapons platforms (such as fighter
bombers), which must maneuver in specific ways in order to solve their fire control problem.
(The goal-oriented target and its possible prediction by a fire control system are the subject
of another report to be published.) Another important reason for target maneuvers is to
evade ownship weapons Certainly. manned targets in range of our guns would bt well
aware of the principles of GFCS operation and behave accordingly. It is also probable that
missiles will be made capable of evasive action either by preprogramming or by being under
remote Lontrol. There are other rea:,ons for target maneuver such as atmospheric turbulence.
target sensor-induced errors, target control system behavior etc. In any case. it is not pos-
sible to fully and deterministically model the anticipated motion of a general target. and we
must live with a certain amount of tracking and prediction error due to this limitation. We
shall find that there are fundamental limitations on the ability to track maneuverilg targets.
A maneuver will subsequently be defined i'or purposes of this report as any target motion
that tends to cause a certain filter implementation to diverge (i.e.. estimation errors become
large).

Several other factots affect the filter estimation error and these must each be considered.
Tracking sensor accuracy is an important one. A very important matter is filter settling
time. In a situation with more than one target to be engaged or when target acquisition and
tracking commence late. it is mandatory that the filter settle quickly. within a few seconds.
Computational constraints on such factors as data rate and model complexity must be

I.
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considered. Computer word length and real-time implementation constraints pose severe
limitations on what one might hope to accomplish when dealing with on-line filtering and
prediction. In short, the problem of target estimation for gunfire control application must
be considered in toto, and in so doing, the filter designer finds himself facing many limita-
tions, both fundamental and practical, that must be recognized if a reasonable design is to
be realized. In the final analysis, judgments must be made that, on occasions, are difficult
to justify with theoretical rigor, and filter design becomes somewhat an art as well as a
science.

Before commencing the actual report, a brief discussion of the nature and structure of
this study is in order. The investigation, to the extent possible, is primarily parametric in
that the effects of individual parameters affecting performance were isolated, wherever pos-
sible. in order to assess the sensitivity of performance to variation of the parameters. It
should be emphasized that many of the results presented in this report were based on studies
designed to reveal the relative merits of one technique or parameter with respect to another
and, as such. ma" lot always be indicative of actual implemented performance when in-
corporated wit., oic, techniques and parameters in an actual tracking situation. The
criterion for performance. or "norm." was chosen, due to the nature of the gun fire control
problem. to be prediction performance. For a "nominal" Navy gun, a time of flight (or
prediction time) of i 0 seconds was chosen as typical tor engagement of air targets and is
used consistently throughout this report. The actual statistical form of the prediction error,
used to evaluate the relative merits of parameters or filter formulations, depends upon the
situation. Whenever practical. the error covariance approach was utilized since it essentially
represents the result of a perfect Monte Carlo study (repeated simulation trials plus
averaging). The error covariance approach can be used to evaluate optimal or suboptimal (if
the *'real world" or truth model is known) performance. There are many cases, however.
when the truth model is not readily available, and simulation must be employed with root-
mean-square prediction errors used as a norm. This is particularly true in evaluating a non-
linear adaptive filter against various nonlinear trajectories. Ultimately. of course, the filter
must be evaluated in relatively uncontrolled circumstances using actual tracking data of real
target trajectories.

Finally, let us consider the spatial problem. Measurements of target position are made
in a spherical polar coordinate frame, but targets are generally not linearly described in such
a frame. Therefore. a nonlinearity is going to appear in the full three-dimension problem.
This consideration was postponed until the last chapter. and all sections until then discuss
only one-dimensional estimation of target motion as a function of time. The reader may
consider this single **channel" to be one direction of some orthogonal system to be defined
later.

Since the author has noticed an occasional tendency among persons unfamilar with

Kalman filtering to regard the technique as exceedingly complex. mysterious and/or

4
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omnipotent, he feels compelled to advise the reader that thc antithesis is probably much
closer to the truth. In the next section, the Kalman filter will be introduced and, throughout
this report, the reader will note that performance remains limited, as it must be, by the
quality and quantity of information available.

II. GENERAL DESCRIPTION OF THE DISCRETE KALMAN FILTER

In this section, the concepts and equations of Kalman filters will be very briefly re-
viewed in order to familiarize the reader with the notation and the types of information re-
quired to construct a filter of this type. The theoretical elegance and practical utility of this
estimator have made it a popular subject for both mathematicians and engineers in recent
years. For the reader who wishes to pursue the subject in greater depth, the author recom-
mends such literature as Gelb (1974), Sorenson (1966) or one of many other textbooks that
deal with estimation theory such as Morrison (1969) or Sage and Melsa (1971 ).* We will
deal here only with the discrete formulations since they are the more natural for digital
computer implementation.

Before considering the equations, we might first qualitatively define a Kalman filter.
The Kalman filter is a linear minimum-variance estimator. In fact, it is a recursive formula-
tion of the minimum variance rules for combining certain a priori information with a sequence
of observations that contain noise. We might also point out now that the required a priori
information must usually be chosen with considerable care if one is to achieve the desired
results. A Kalman filter is also a maximum-likelihood estimator (and in that sense an optimal

linear or nonlinear filter) but only when the errors are uncorrelated and Gaussian. Of
course, as mentioned in the Introduction, we really do not expect to operate our filter under
optimal conditions due primarily to target modeling errors and also to correlated and per-
haps slightly non-Gaussian measurement errors. Indeed, most applications of the Kalman
filter are suboptimal. Kalman filters often are actually designed to be suboptimal. This
frequently occurs when the dimension of the true state vector is so large as to render tile
computations impossible to effect on a selected digital computer. Of course, we strive to
approach optimality within the imposed computational constraints and do just that when
circumstances permit. The fact that we can often approach optimal filter performance is
therefore one important reason for selecting a Kalman filter.

Another equally important reason is the inherent flexibility and control one has over
the filtering process in order to maintain desired or expected filter performance. A signifi-
cant computational advantage over certain other filtering techniques (such as a Bayesean
estimator) is also enjoyed by Kalman filters due to a reduced matrix inversion burden. Singer
and Behnke ( 197 1 ), in one of the best papers on the subject, compare five types of filters

*Sce Refcrences.
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in terms of tracking accuracy and computational requirements when tracking maneuvering
targets in a tactical application. They considered first and second order polynomial Kalman
filters (to be discussed in the next section); an alpha-beta filter (a recursive least squares
filter with a first order target model): a Wiener filter (steady-state Kalman filter), and a
simple two-point extrapolator. The second-order Kalman filter was found to be the most
accurate. In a later section. we shall also demonstrate that it is possible to significantly
reduce by more than an order of magnitude--the computational burden of a Kalman filter.
It is generally accepted that. under optimal conditions. a Kalman filter will out-perform
other data-processing algorithms such as those based upon least squares. This factor, although
important. is probably not in itself justification for implementing a Kalman filter since.
under optimal conditions. almost any algorithm will perform acceptably. The real advan-
tage of a Kalman filter is tinder suboptimil conditions. The Kalman filter "thinks" it knows
how well it is performing and can be made to determine when it is not performing properly.
Then. as just mentioned, the Kalman filter can utilize its flexibility to adjust the covariance
and regain calculated perfonnance. These concepts will be discussed in much greater depth
in the section on adaption.

The target is assumed to be modeled by a linear. discrete. system model, as shown in
Figure 2. 1(a). The equation for the system is:

xk + I) = O(k + 1. k) x(k) + w(k) (2.1)

The system at time t(k) is characterized by a state vector x(k) of dimension n. The state
vector is assumed to r-opagate linearly according to an (n X n) transition maaix O(k + 1. k).
For purposes of this presentation. no control input or known forcing function will be

considered.

Any unmodeled effects will be assumed to be random or "nondeterninistic" and are
h.wped into a term (the last term-w) called "process noise." The random process noise
sequence has known statistics given by

: -w(k)! = 0 (2.2)

: 1I(j)fw(k)! = Qk) bj, (2.3)

The actual magnitude of Q is required by the Kalman filter for proper (optimal) operation.
We ,hall see that often this information is not availahle a priori and Q must be adjusted dur-
ing operation.

In Figure 2. !(h). we assume we have measurements ..k) of dimension m. related to the
state vector by an (in X n) "observation'" matrix 11(k) (also called the "'matrix of partial

6
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derivatives") corrupted with a zero-mean. Gaussian. white noise sequence v(k). That Is.

z(k) = H(k) x(k) + v(k) (2.4)

where

E[v(k)] 0 (2.5)

E v(j)vT (k) K) b=k (2.6)

I Notice that the use of the H matrix in Equation (2.4) readily allow: t!,. mixing of measure-
inents of different types.]

It is further assumed that

EtyO)wT(k)j = 0 (2.7)

rhe basic recursive, linear estimation problem is to determine an estimate (kik) of
x(k) that is a linear combination of the previous estimate and the current measurement as

in Figure 2.1(c,.

We find we can write this as

- (kk) = .(klk- 1) + K(k)vkik- i) (2.8)

L where

r i(kik- 1) = O(k.k- 1).*(k-llk- 1) (2.9)

is tihe extrapolated estimate at t(k). i.e.. :he estimate at t(k) based on measurement data
through t(k - H). The a ptI,.ri residual vector of dimension m is defined

j(kik- I) z(k) - H(k) _(klk- 1) (2.10 1

and K010 is the (n X in) gair, matrix. Th,. difference between thW estimate and the true state
tt the error vecsor

(jlk) =  (jk) - )(2.11)

with assoviated (n X n) error Lovariance matrix defined as

P ik) = Ei'[_elk) eTjik)I .

The basis of 'he Kalman filter is the selcctian of the gain matrix in E-quation (2.8) that
minimizes the trace of the error covariance matrix. The solution to this problem, found by

8



Kalman ( 1960. 1961), is well known and its derivation can be foum in the previously men-
tioned references. The Kalman filter is found to be a set of recursive matrix equations tha;
are usually written and implemented in two distinct steps. The -extrapolation- process
simply predicts the state vector, using Equation (2.9). and the error covari.ance via

P(kik- 1) = 0(kk- li)P(k- Ilk- I)OT(k,k - 1) + Q(k - 1; (2.13)

In this step. the error covariance usually increases since we are advancing in time witiiout
benefit of new measurements. The second step. the -update.- applies to the process of
reestimating the system to acknowledge that new information. z(k). is available. The optimal
gain is found to be

K(k) = P(kik- I) liT(k} Il(k) Pkik- I) fiT(k} + Rk)]l-1 (2.14a)

= P(kk) [IT (k R- i(k) (2.14b)

Note tl:ai the bracketed term to he inverted is of dimension (ni X m which i, usually
smaller tit-:n the other matrices with dimension (n X n l. file state can then !v updated.
utfa, Equation I.). ;,nu th," %-ror covariance is updated as

Ptk.k) = I I K(kdt1(kl Pkk- I) (2.15)

We find Ihat the error covariance is reduced by the update step. usually more than it was
increa-d in che cxtrapola.ion step. causing a net reduction in the error covariance over a
complete -.-vc' of the filter (unles-; the filter has -,eached steady-state operation). If there
is no process noise ;n the -. st,.m (Q = 0). the error covarance ternas eventually approach
zero (for the models considered in this report). The error covariance significantly in-
flucnces the operation of the filter throt,.h the gain matrix. In general. the larger the
error covarian.-e, the larger the gains. Th gain represents thL leative weighting between the
old estima;e and the new data. Initially the error c,'jvariance and gain are large. which
repr v-sents the fact that we have not processcd much data and therefore can not place nmuch
confidence in our estimate. At long times. the error ,:ovariance and gains approach their
in'nimum values z,:d reflect the idea that. having pro:s.s.d a large q;uantity of data. ec
place mor': &:onliak nee in our estimate. If there is no prces,, noise. evcntually the error
Lovar*anc. becotyus small and the filter begins to virtually ignore jny -,w data. This -on-
dition can lead to filter ditergence if the dynamit-, arc - . --I s:hoptinially. This problem
will he ;isucsd ;,% a later section. A filter with ma:. -- covariance and sina,! gains -wil!
onrien be referred to as having a long "'memory'* (or "narrow barndwidth*" for thoc who
consider filters from the frequency domain). ('on--:..iy. a filter with farge error con,
variance and gains will te said to have a short merior-y or wid.- bandwidth.

Realization of the optimal Kalman filter, we have found. requires ex..ae krnwlc.igc "f
systcm dynamics. mcasuretrent statistics, and process noise statistl-.-. in gencra | . fh. informa-
tior. is never availabk- exactly. loi example. the rm-r.usnaacrnt for invasurement -atistic.
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poses some interesting problems. It is often difficult, even under controlled laboratory con-
ditions. to obtain good error statistics for tracking instruments, It is frequently even more
difficult to apply these statistics with confidence when the sensor is employed in an un-
controlled environment such as a ship at sea operating against real targets. We therefore can
expect the values of the statistics assumed for the filter implementation to be slightly mis-
matched with the real world. Such a mismatch results in a suboptimal filter implementation.
In order to assess the effect of such a mismatch, we resort to a technique known as a
"sensitivity analysis." whereby we calculate the actual covariance of the suboptimal filter
implementation and compare it with the optimal "real-world" value possible. If a sub-
optimal filter of the same structure as the optimal but with unmatched parameters (leading
to suboptimal gains) is utilized, the actual error covariance PACT can be calculated with the
following equations.

PACT(kIk- I) =ACT(k, k- I)PAC(T(k- !1k- I) ACT(k,k- I) + QAcT(k- I)

(2.16)

P,\(y(klk) = [I - K(k) IIACT(k)] PA('T(kik - I) [ - K(k) HAcT(k)]T

(2.17)
+ K(k) RACT(k) KT(k)

The subscript A('T means that the matrix is evaluated with the true parameters. The gain
K(k) is assumed to be calculated with assumed design values of the parameters. An impor-
tant point is that Equation (2.15) gives the actual error covariance only when the optimal
gain is chosen. Strictly speaking. Equations (2. 16) and (2.17) can be used only to represent
the actual error covariance when a suboptimal gain is chosen but the implementation of the
dynamics and measurements are assumed correct. In fact, Gelb (1974) (pages 254 and 271)
argues that. under certain conditions present in this application, these actual error covariance
equations are correct even with incorrect transition and observation matrices. In any case,
these equations, often referred to as "simple sensitivity equations," are the equations used
for all sensitivity work in this report and the more complex "model-reference" equations
are not used. Presentation of sensitivity results has been found to be most recognizable if
the actual parameters are held fixed and the design values allowed to vary.

Since the Kalman filter equations are recursive, it is not necessary to store a large
quantity of data. This factor, along with the basic computational simplicity of the equa-
tions. allows easy implementation on a digital computer. Notice that, since the gains are
not a function of the actual measurements (for a truly linear system), it is sometimes pos-
sible to precompute the gains and store them as opposed to calculating them in real time.
This precomputation can be performed only when values of 0(k, k - 1), R(k), Q(k), and
H(k) can be predetermined for all k. With the initial value of P specified, all future values
of P(k) and K(k) can then be calculated. It will be shown that, for the Kalman filter appli-
cation in this report, it is not possible to predetermine the above matrices since they are
nonlinear functions of the actual target motion in real time. The fact that the Kalman
filter must propagate the error covariance matrix as it runs is an ambiguous requirement
since the filter derives both its power and its principal computational burden from these
matrix equations for P.

The basic Kalman filter algorithm, for the situation described in this section (i.e.,
linear equations and uncorrelated noise), is summarized in Table 2. I. A FORTRAN IV

10



Table 2.1. Kalman Filter Algorithm

Model x(k + 1) = *(k + I. k)x (k) + w(k) (I)

Obsrv.tions z(k) = i(k)x(k) + v(k) (2)

Statistics E w(k)j = Elv(k)l = E.(j) wr(k)) = 0 (3)

ElwjO)wT(k)l = Q(k)6jk (4)

EIvj); T(k)l = R(k)Sjk (5)

State Extrajolation .k(ik - 1) = k- I ) i(k - Ik - ) (6)

Covariance Extrapolatien
P(kik- i) 0(k.k- 1)P(k- 1Ik- I10 'lk.k- It + Q(k- 1) (7)

Gain K(k) = P(k'k- l)l'I(kljlljftkk- Il)lIt(k) + R(k,] "' (8)

State Update _(klk) = Sfkik- 11 + Kik) Iztk) - ki(Lk- I (9)

Covariance Update
Pfklk) = It- K(k)H,Ik)' Ptkk- I) (lOa)

= P(klk- 1) - K(kul(k)Ptklk- DII~k) + Rik~l Klfk) (lOb)

version of this algorithm. .alled KA LMAN. can b. found in Appendix A. This subroutine
t'as utilized for many of the simulations required for this study.

Ill. THE DERfVATIVE POLYNOMIA. TARGET MO)EL

In this section. the concepts and equations of a one-dimensional. derivative poly-
nomial filter are introduced. The target model that is ultimately recommended (in Section
IV) is not exactly of a polynomial form but is quite similar in implementation. As such. the
parametric stdidy of the polynomial filter in this section is applicable ir many ways to the
nonpdynomial target model selected in the next section and. indeed, is partly responsible
for that selection. It should also be nentio-ed that the covariance convergence study. re-
ported in this section. was conducted under , 1e assumption of optimal conditions. By this.
we mean the following: the actual target mod-. is always assumed to be a polynomial match-
ing the filter model: the measurement errors are truly uncorrlated and Gaussian: and the
actual measurement error variances match the assumed (filter) measurement error variances.

Ii
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Before continuing, a very brief discussion of the polynomial target model is in order.
In a general tracking filter application. wher the particular strategy being exercised by
the target is unknown. the form of the state vector and its propagation characteristics are

assumed and may or may not represent the true target motion over long periods of time.
We do demand. however, the assumed target modAl to provide a reasonably accurate approxi-

mation of target motion for short periods of time. The choice of a polynomial. of course.

is then quite logical since the ability of a polynomial to approximate a process-at least

locally is well known. Indeed. Zhe famous Weierstrass approximation theorem tells us that
polynomials can approximat. an) continuous* function over a finite interval to any degree
of approximation desired. We are not really interested in considering very-high-order poly-

nomials. however. It must bc emph,,-sized that the gunfire control problem is not primarily
a fiting or smoothing problem but a prediction problem. A higher-order (ane. thus more

accurate) pr,.ynomiai fit of observed p;st data may not help us. and may even hinder us. to

more accurately predict future target po;ition for long extrapolation times. Also. higher
order filters are computationally more burdensome and. dependit ; on the order of the

highest derivative,- may not settle fast enough for the gunfire control problem (as will be

shown). For thcse reasons. we consider polynomials with nonvanishing derivatives only
through third-order (jerque). The important ,dvantages of such low-order polynomials are

computational efficiency and limited necessity for a pritri target maneuver strategies. For
a complete treatment of various polynomial filth.rs. smoothers and predictors. the reader is
referred to Morrison ( 1969).

A. EQUATIONS

l)vivative polynomial models are described by the d."ferenfiai equation

dn * I x(t)JdtR 1 I 0 (3.1)

'whcre d" x/dt n is the highest nonvanishing derivative and n :s referred to :s the 'order- of
the model. The state vector is defined

xIt) !x(t) dx(t)idt d2 x(t)idt2

- dn x(t)!dtn IT (3.2)

I [X I(t) x,(t) X3(t). .Xn,.l(t)I T

'Ali |rtg ' tlh m- mi. ¢( co~r . bc c-mtrnai tg poui4.tiue ad wk y Act-ckictrati muvI atwiabe um: but tray

he ctks tivwl din.nmuo it. Tht ispi ictque ny wit always cutt.
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Notice that the state vector has dimrnsion (n + 1). In the notation of continuous linear

systems.

dx(t)Idt = FRt) x(t) (3.3)

We can write the elements of the matrix F(t) as

fij(t) = 61-j-i I < ij < in + I) (3.4)

where 6,., is the Kronecker delta. The transition matrix is therefore

Oi,,k + I. k) = (.t)j-ili-)! I < i.j in + I (3-5)

where

At=ttk+i)- 1) = lIl (3.6)

and

l/(j-i ! = 0 for j<i (3.71

For example. for n 2. we find

F1 At -;_,,

oik -1. k) =0: 0 ! -At (3.8)

0 0 1

For purposes of this report. the data rate K Mertz? will always be assumed to be constant so

that the transition matrix (a function of -At onlyI is Iime-invariant. For the present. we will

assume proce-s noi-x is zero.

In our application- we will have .-vailable measurcments of position oniv. so that the

measurement vector and covariance reduce to scalars. That is.

ilk) = f,,kiI ( 21.)

R(k) Woki (3.10 -

where o- is tht- lieasurentit error variance. The lenmtets of the (m X In + I) of'servation

matrix arc simply

13



hij(k) = 1 6jI i = i = I

I =j - (n+ I)

For n - 2, we find the row vector

11(k) = II = 1 0 01 (3.12)

The residual also reduces to a scalar quantity

v(klk- I) z(k) - 1 (klk- 1) (3.13)

The simplicity of the measurement matrices result in the gain calculations being efrected as
rather simple algebraic functions of the extrapolated error covariance. E.g., the gain is the
column vector with elements

Kj(k) = P,j(klk l)/JPII(klk - l)+0 2 (k)J j = I. n + I (3.14)

B. INITIALIZATION

In order to specily completely I set of equations representing a derivative polynowjal
Kalman filter, we have to consider a method of initialization. Since the Kalman filter cqua-

tions are recursive, values of both the state and associated error covariance from the previous
cycle are required. For most linear filters, the method of initialization is not particular,,,
significant because the effects tend to vanish at large times. Indeed, that is the case for diis
problem. Ilowever, it is desirable to limit the excursions of the predictor while the filte" is
ill the Unconverged condition. One basically wants to form the best state estimate, bas,,'<
on any information that is available, that minimizes the associated initial error covarianc ..
In the absence of any a priori target information, the only data available to initialize the
filter will be the measurements. In order to initialize the derivative elements of the state
vector, it is necessary to have available, at a minimum, enough measurements to define the
re(luired derivatives by differing techniques. This method approximates derivatives (known
as "pseudo-measurements") by finite differences of current and prior position measurements.
For example, let us consider the case n = 2 and use the well-known backward difference
formulae (neglecting higher-order terms) where we approximate

ki(010) = z(0) (3.1 5a)

i 2 (010) = 1z(0):- z(- )I/At (3.151,)

k.3(010) = z(0)- 2z(-l)+,(-2)/At 2  (3.15c)

14



We can now evaluate P(0/0) which we will write in the normalized form

P(kik) = u,(k)p(ko,(fk) (3.16)

where o,(kik) is the diaganol matrix of standard deviations of the state vector error ou(klk)
and p(k) is the matix of normalized correlation coefficients. Assuming the meassirement
error variance is not rapidly changing and neglecting finite-difference approximation error.
we find

0 0

ofWOSO) = o( 0 Ai 0 (3. 7a)

0 0 v~A!

P 1 :v' ' (3.17b)

Unfortunately. for high-data-rate .ystems. the error variances of the derivatives, using the
finite-difference method of state estimation, can become unreasonably large. For example.
from Equation (3.17a). we find that for O0) = 5 yards and At = M6 second. the standard

deviation of the acceleration error is approximately 292 Us! This situation is clearly un-
desirable since we could guess zero for acceleration and nerer realize an error larger than a
few Gs. A similar argument can be made ccacerning the velocity initialization but the
numbers are not as dramatic. T',ercefore. we will choose a single-pass (using one piece of
data) initialization for the second order filter by taking

1(0I0i = z(Ol (3.18a,

R'OlO = 0 f3.1:'b)

x%(1OiO) = 0 (3. 1)

The values for the derivative state error standard deviations would then reflect our estimates
of the possible errors that Equation (3. S would produce. This is effected as

IS#



F(o) 00I t

P(0O, = 0 o(O) 0 3.19)

* 0 0 oi0

where

ai(0)f~ Ii _dU3fd I~2b

Gi(O) =1 Idix(O)idt 2: f3._IO0'

arc a ptiri cstimates and would deper.d upon the type of target. For example. it has bcen

found that o-{O = 300 yardsiscond (approximately Mach i ant a{O) = 10 yards stcond-
tapproxinatel% one G)quitc adequately span the spectrum ol possiblc air ta-.ets in the cur-

rent targcl ,'erario. Singer f 1970) has suggested a nethod of esimating a.iI as

A-
o0 =- II 4 - Probabilityi x = A,n,, - Probability (X: =ij I3.21

where A.n.,, i-- the maximum acceleration capability of the target which. presumably. one
inigh estimate for a particular class of tarcts. The values of a-40) and 03(0) for surface

targets would undoubtedly be much smaller. :or example. we might choose o.(0J

14 yards/second (about 25 knots) and o_%O) = Z yard sc.-ond faIzul 0.2 G. Upon con-
paring error-convarisnce -sults of the one-pass initialization with those of the firite dif-
ferenc:e initialization. it was found that. after approximately 10 seconds. there was no
appreciable differcnee. On the other hand. the one-pass initialization yields considerable

lower error during this initial period. For the csse of n = 3. when a value for 04(0) is re-
quircd. we must estimate the maximum rate of change of acceleration. For a high-
pe-rformance air ta..et. %uCh as a m-dem fighter aircraft. the author learned (from dis-

cussio1.% with pilot s that the maximum slad-.t, a turning rate over the entire speed/
maneuverability ,pecirmn is approximately 20 degrees/second ic,, = 0.3.:9 ra d iansecond..

A value of

04(01 = W, - 03f01 3.221

wjs therefore chosen for initialization of the third order filter;.

In conclusion. the one-pass initialization is very simple to implement as it requires no

additional menasurements or logic. It was found, both from error. covariancc result, and
Monte Carlo simulation to yield improved estimates during the initial transient pha,e. It is

16



used in all remaining work in this report and was subsequently implemented in tile digital

MARK 68 GFCS.

C. CONVERGENCE PROPERTIES

E-arly in tile ccairse of this investigation, it was dis.covered that fundamental information
on factors that directly affect filter convergence and s.ttling time-and therefore filter
performance --was not available. Qualitative relationships were usually known. or at least
suspected. between convergence rates and such variatles as polynomial order, data rate,
initialization methods. etc. It was felt. however, that quantitative measures of such effects
were necessary if intelgent decisions and tradeoffs were to be made concerning the basic
operating conditions of the filter. As mentioned previously, these studies were conducted
under optimum operating conditions and. as such. are intended to reflect relative perform-

ance of one fil cr/parameter set with respect to another..

The two significant l)'iraineters that describe a polynomial filter are the polynomial
order n and the data (or cycle) rate

dk:dt = t '

In order to ctabli.h the relationships between filtt-r performance and thew parameters. the
filter matrices o" the preceding paragraphs were inserted into the general Kalmaii filter
supllrogram ii Appendix A which was exercised for various values of these parameters.
Specifically. the values n1 = I. 2. and 3. corresponding to constant-velocity (first-order).

constant-accelcration (second-order) and constant-jerque (third-order). were selected Data
rates of k = 2. 4. 8. 16. and 32 !!ertz were considered to span tile range of reasonable pos-
sibilities. Assuming a t% pical constant measurement error standard deviation and zero-

process noise 0. the error covariance and gains can be calculated independently and no target
measurements need be simulated. All conditions were assumed to be optimal so that filter
error .o aiance %ould truly represent filter convergence. In keeping with tile idea. pre-
viously e\pressed. that predicted position is the important quantity, the quantity actually
Iied by a fire control system. the standard deviation of predicted position error ol (t +
tp tt) v. as chasen as the ultimate measure of relative covergence. Piedicted position, of
,course. can not settle until all elements of the state vector have settled so that oI (t +

lp t) is an eff'ective -'norm" of the current error covariance. In fact. it can be shown that
any cost f', nction of the form

J = 1I l' A el

can ht uniquely mirnimi/cd with respect to K only if A is positive scmi-definite (see Geib.
I975 for xanipia. Of course, the trace of P is only a special case when A = I. One could
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also choose the positive definite matrix A = OT(tp) 0(tp) as we have and minimize the pre-
diction error. For the case of n = 2, we are interested in

oj (t + tit) = [P11 (tlt) + 2tp P1 2(tlt) + tpr P2(tlt) + t2 P1 3(tlt)

(3.23)
+ tp P2. t)+t P33(tit)/411/2

A prediction time of tp = 10 seconds is used as a standard of comparison for all the one-
dimensional results in this study. This corresponds to a nominal projectile time-of-flight for
a Navy five-inch gun system engaging air targets. Notice also in Equation (3.23) the factors
that multiply the rate errors. It can clearly be seen that velocity and acceleration estimation
errors are the principal cause of prediction noise.

Before discussing the convergence results, it might be helpful to consider a transforma-
tion of the polynomial filter, suggested by Morrison (1969). that is useful in understanding
and interpreting these results. A transformation of the state vector can be used to absorb
the At dependence in the error covariance equations. This is done by defining an alternate
state vector

x* (t) = Ix (At)dx/dt (At 2 /2)d 2 x/dt 2

(3.23)
... (Atn /n!) dn x/dt lT

The equivalent transition matrix is

ii = 0 - l)!/1(i- I)!j - i)!! (3.24)

which. we find. is a matrix of constants indep,.ndent of At. For the example, n = 2. we find

0-0L 0 11
It the At dependence is removed from the initial error covariance. the error covariance 'i.;

gains are then a function only of the data point k and the order n. In subsequent sections.
we will show that the frequency content of target motion is rathei low so that a high sam-
piing rate is not actually necessary to satisfy the Shannon sampling theorem. In fact. the
principal advantage of a high data rate is to reduce the effective measurement error level. In
the section on prefiltering, it will be shown that data compression techniques can be used
to achieve effective high data rates without actually cycling the Kalman filter at such rates.
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In order to consider the real convergence criterion, the extrapolated position error
standard deviation, it is more straightforward to use the original unscalzd equations (without
Morrison's transformation). In Figure 3.1, we have plotted the time history of the standard
deviation of the predicted position error (tp = 10 seconds), normalized by a (the measure-
ment error level), for each filter order and data rate pair (n. k) under consideration. Such a
graph can be used to determine optimal settling time for any particular situation. For
example, suppose we decide the filter is "settled" enough to fire the gun when the predicted
target position is accurate to within 25 yards. If we can track the target with a a = 5 yards,
[hen using tile (2. 16) filter, we could start firing 8 seconds after the initiation of target
track. Basically, we see from this graph that the lower the order and the higher the data
rate. tle faster convergence will occur. We see that the third-order filter converges painfully
slowly at these data rates and is probably not suitable for gunfire control purposes due to
this factor and the heavy real-time computational burden of this filter at high data rates
Tile constant-velocity filter, on the other hand, converges very rapidly, predicting bette:
than the tracking measurement error in less than 10 seconds, with a data rate of only 4 Hert'.

Of course. settling time of diese optimal filters is not the only consideration in making
a choice. We know that targets do accelerate and that the constant-velocity filter, without
an estimate of acceleration, will do quite poorly in predictiig future target posiion. The
error in that situJtion is of a bias type rather than the uncorrelated error considered here.
In Figure 3.2. we have plotted for reference purposes the complete error convergence I-istory
of all the state elements (position. velocity. acceleration, and I O-second predicted position)
for the constant acceleration (n = 2) filter. With the dashed lines, we have also plotted the
corresponding actual error that would occur if we attempted to filter the "real-world'
constant acceleration model by assuming a constant velocity (n = I ) filter model. Large
bias errors in all state elements are observed to occur in the actual error elements when using
an n = I filter in an n = 2 environent. The prediction error. which initially starts to get
smaller, quickly reverses itself and satisfactory prediction error is never achieved. The n = I
filter iq really not a candidate if we are going to attempt to deal with manuevering tilr-ets.
That leaves the n = 2 filter which we would ch'-ose to implement if a polynomial target
model were selected. We would also choose the k = 16 Hertz (or faster) since it converges

fastest. ('onvergence time is not only important initially. but. as we shall see in a late, sec-
tion on adaptation. it may be necessary for the filter to reconverge when the adaptive
features in the filter decide it necessary. Filter responsiveness in such a situation dictates
greater significance to the problem of' realizing a short settling time.

In conclusion. then. we would choose the second-order filter over the third-order
(ruled out due to settling time) and over tie first-order (bec:!use we must track an aceeflerat-
ing target in an effective manner). We also conclude that. given uncorrelated measiuremnt
noise (satisfying the requirement for the derivation of this filter). we want to process data
at the highest rate possible. The final determination of this rate will be based or, avaiable

19 j



2O.M,.A ACTa** -

o "):10C fARS. ON

'~oc A~D~/EC~rO /"?ACT

V F 
-

I I -2

G ". ( .,;

' 1,:.41

0 IL 4e. .Z .,Za4
VI'S f (SeCohNOSD

with Uncorrelated OePs
lnjtializat~or Normalized
Stand1ar. Deviation of Pre- Tm scns

dicted ( 10 sec) Plositjoi' Error Figr32.o

ErrUsing a = I Filter

comutaiontime in the real-tirve filter implementation and on the a.'ility to deterinen and
rnoethe actual correlated portio.: of the measurement inse. This la.-t aspect -if the

probem illbe discussed in a later section. We will pi:-ceed on the basis of k =16 li.rti

unes therwise noted. For reference pu-noses. a summinary of the filter equations for
n = ca befound in Table 3. 1.

Another possibility. which the author would like to exrioL in the future, is that 0j
polynomial fiftee casading. Ini this approach. one could ce.;iceivably obtain 'he fasi con-
vergenice properties of the low-order filter and the mcdeli ig imp.-'wement of the h igh-order
filters. The procedure might be implemented in the follo-#ing mann%,r. A constant velocity
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~,(kk*- *-i~ - I' At v, k - I1k - I 2

= ~k- Vk~ ii(3)

P*,;-I ;11ik- iik- IJ + 2A-~zti IUk- U+ Az 1 3(k- ilk- I)

+ 4C 111,011- Hk I; +A3 P,.tk o lk-- 1: +~~ :*--(k- IN~ 1)

+ Q . k - 1, (4)

P,2fklk - 1) z 1! ik - i k - Ir+ Litill'k - Ilk- I) r At P2 (k- Pik - 1)

+ Z, 2 p'.; f k- I k- I ) + - -l' 1 i:k - I+ Qi,(k= -1 (5)

P13kik- 11 P1,ok- Ilk- 1) + AiI'-,fk- ilk~ -H + -~P2.(k-Ilk- 1)

~Q1 ik - I 1 (6)

P2 iiklk- 1) 11,,(k- lik- 1) + 'At P,;(- Ilk- 1) tA! 2 Pi-3(k Iik- I)

+ Q:2t(k - 1 (71

P,-ik~k- 1) PI P2 '- I k - I ) + atP3 3 t!.- 1k - Ii + Q 3 k- UI(

Pi3.ekik- 1) =P 33Pk- Ilk- 1) + Qwk- 1) (9)



ITable 3. 1. Secondordcr Filtet Lqu- 'ons: A Sunrnarv -(Continued)

GAINS

KW = P,1(klk- 1)/1P11(klk- 1) + U2k)J (10)

Ki((k) = P12(klk- 1)/f P1 (klk- 1) + 02 MkI 0 1)

K2,(k) =I'fk',k- l)/jP11(kik- 1) + o2 MkI (12)

REiSID)UAXL -t~-

P (k'k- )'~~ -1 (13)

kI U i)A %AA I :::::z::14
jk 1)(~ + K1 ~okik- ON 6

P, ikk I - K,kW) P,1 Wkk- !)(17)

P,2 .kik) =1I- KIkuJ P1ztklk - 1) ILI 8)

P,1kk)= I - K, k)I P1 3tkik -- 1) (19)

P-fk = Pl,,k'k - I)- Kik) P,2tkik - 1) (20)

Pfi =Pz~iki.k- 1) - K~fkJPjtkqk- 1) (21)

k k hoik- 1) - K3 k)P 1 $fkik- 1) (22)

INITIA LIZATION

ij (01(0) z(0; (23)

*,iU~j =Y~ 3 0!0)= 0(24)



Tiabl 31l. Second-Order Filter Equations: A Summary -(Continued)

INITIALIZATION-oninued)

p11(010) = U2(0) (25)

P12(010'1 = 0. (26)

Pt3 ,010) = 0. (2 7)

P22(010) = 12(0) (28)

P2.1(00) = 0. (29

P33(0 0) =~ 0)M (30)

PREDICTION

x, (t+tp it) = x(tlt) + i,)(f~t)tp + fc3(tltp I- (31)

RECOMM ENDE D VALUES OF PARAINETERS

16 He~lrtz (32)

FOR AIR TARGETS

a, W0) = 300 yards/second (33)

03(0= 10 yards/second2  034)

FOk 51JRFACE (,'. WP) TARGETS

v2(0) = 14 yards/second (5

v3(0) = 2 yard/second 036)
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IV. Till- RANDOM-ACCELERATION TARGET MODEL

The derivative polynomial target model of Section Iii. while possessing several advan-
tages. undoubtedly suffers as far as being a realistic representation of the scenario of actual
targets over a period of more than a few seconds. Actual targets would rarely traverse a
simple predi,'tablik path while in the ran-ge of engagement by our GFCS. Instead. such
targets would be inanuerering. These maneuvers could take the form of a deterministic path
if the target has a particular goal in mind. such as effecting a collision with the ship (in the
case of an anti-ship missile) or the release of ordnance (in the case of a bomber). The
scenario would also have to include nondeterministic (or random) maneuvers in such situa-
tions when the target is maneuvering merely to evade interception by the ship's weapons or
when irregular winds and atmospheric turbulence would act on the target. Anti-ship missiles
would be subject to the latt:r .-frects and also may respond to the wander of its own radar
around the target ship. In any case. the probability of a target following a constant accelera-
tion (or any p;.lynomial) cour-e for any length of time is. unfortunately, not what we might
prefer. With this idea in mind. perhaps the problem can he approached from a different

int of view. Rather than attempt to model tie target with i deterministic trajectory such
as a polynomial. let us consider a case where we acknowledge the fact that the target is very
likely to Le maneuvering in some unknown manner and where we assumc that each dimen-
sion of sta-h trajectories appear (to the FCS) to be a random variable. The following model
was developed by Singer (1970) and has already been selected for implementation in several
other fire control and tracking systems.

The target acceleration is assumed to he an autocorrelated (or serially correlated)
random variable with known statistics. Specifically. Singer chose to model the acceleration
as a 1;rst-ordcr Markov process with the differential equation

d fd"Xo\1 I - d xdx \ + wt (4.1)

\ dt ) _Tm k dt2 I

driven by a white noise input of varianct

U 2r) = r 6") (4.2)

The acceleration sequence generated is a form of process known as a random walk. An
example of such a process generated on the computer with a correlated random number
generator CORNUM (See Appendix A) is shown in Figure 4. 1. Nqotice that the correspond-
ing position (double integral of . is also plotted. The -itocorrelation function for the

S-e ir;:.!lot. ik the exponen!ial
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level of target acceleration and rm as the characteristic maneuver time approximately 0.8
times the. mean time between acceleration zeros) or the inverse of maneuver frequency w.Notice that since m is eentially the rms level of acceleration for one dimension. the
actual peak total (three-dimensional) acceleration might be several I pehaps three to 'our)times larger than a(. It is felt that this model is much boater suited to our prposs thanthe polynomial models t e causc it directly relates the filter parameters to the kinematics ofthe tart scenario. Whe a also found that this moel performs better in both fieringand prediction than either the n = or n = 2 polynomial models. It should b emphasi.edthat we do not mean to imply t h at one cannot find particular trajectories that might poorlymatch this model. We do expect actual trajectory to b -contained statistic-dily in thernactual pe ration model and thus b a "reasonable" sampe fro h r our assum)

tinm lagetha 0 m* Iti etta hsmdli uhbte utdt u poatn.

The author l els that the random acceleration model. whle far from pe rfect. is the bestmoder yet develod for general tracking filter application. The model can be writte in
state spade notation by defining the state vector

25



X(t) = Ix(t) dx(t)/dt d2 x(t)fdt-I 1  (4.4)

and

dx(t)!dt = Rt)x(t) + wit) (4.5)

where

Fi) F 0 0 1 (4.6)

10 0 I rm
Lo

and

wit) = 10 0 wt)I' t4.7)

By simple integration of Equation (4.6). we find that the transition matrix can be written

A t -Atl

O4k.k- 1) = 0 = 0 I (4.8)

LO 0 0t

where

Alt = Cxp(- Atilt,) (4.9a)

#(At) = Tm II - YAt)J (4.9b)

CIAt) = Tr 1lAt) + At/tu - II (4.Q)

The argument of a. ,nd -r - At - will hereafter be suppressed unless specified for a par-
ticular puqpse. The resemblance of this model to the second-order polynomial model can

be seen immediately if we consider the limiting case of rm >> At. -r:,. transition matrix
becomes:
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I At A12!/I

* a 0' =  0 1 A t (4.10)

0 0 1

i.e identical to the second-order polynomial model. On the other hand. if Tm vanishes (or
. << At). we find

0-4 =  0 I (4. i I1

LO 0 -

This transition matrix corresponds to the first-order polynomial model. We would tlherefore
expect, finite values of T. (between zero and infinity) to yield a model that exhibits con-
vergence properties between those of the first- and second-order polynomial filters. Indeed.
this turns out to be the case. In Figure 4.2. the extrapolated position error standard devia-
tion is again plotted for various value% of -r.. The cases r. = 0 and r - o corresponds
exactly to the first- ind second-order polynomial cases. All cases wee run with a data rate
of 16 Hertz. a value of o = 0 (limiting case of a. small) and with one-pass initialization.
We find that. just as expected. as rT gets larger. the convergence properties move toward
the second-order polynomial case.

The process noise matrix. Q. is developed in the appendix of Singer's paper. This
development is rather lengthy and will not be reproduced here. The final results can be
written

QI = 1402 I1 + I(AtIT.) - 2(AtTm )2
(4.12a)

+ 2{'At/r,. )' /3 - 4AtTm ) i - ir,2 I

Q 1 - + 2(tir.)r (4.1 -2b)

- 2(At/ ) + (At)I) 1

QI ~ ~ I ---' mii z (tM'." (4.1",2c)

Q2, = T a2, (14- 3- 2(Ati/r.)l (4.12d)

Q23 = m (+ - 27) (4.12,)

Q33 = 0(-7) (4.120
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(Noticec that Q is the only place where am appears in the filter.) Again for the limiting case
of rm )0 At. this matrix can be approximated 2s

[at'i 2O Wt318 At2I61

24ta M T I Atz 16 .1t/2 j (4.13)

Q = z ~ 4016~ At/2

Since we will always operate with paramneters At and -rM in this latter range. we will use
this approximate form of Q for our work. Simulations show. that for values of the parameers
Ait and 7m in the ranges considered in this report. there is no differenice between the use
or Equati-in (4-13) instead of Equation (4.1 2). We must use the exact expression for Q in
the iong-time extrapolated covariance however. Notice in Equation (4.13) that a decrease
in Tm Or ant increase in frequency influences Q in the s~ime wayi as an increase in a.. The
extrapolated position variance equation for this case is

PI ( +t; -t) 2Pi ItMb + 2 t PI 2 t/t) + 2 ap Pi. (it

t2 P2,(t/t) + 2a,, t,, PJV3(tlt + Cr. 3 (tt (4.14)

+ Q1
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where

C l exp(- tPira) + tp/TM - ll (415)

and

Qil = T4M 0 I! + (tp/r -) T- )z

+ Z(tpi ra )3 3 - 4 (tr/t M )cxp( tpiIrI 5  (4.16)

- exp- 2 tit )I

The choice of a good value of Tm is a function primarily of the target wcenario for the
GFCS. The autocorrelation was studied for several typical profilcs of older anti-ship mis-
sios and a value of approximately TM = 20 seconds appeared to consistently be yielded.
Singer ( 1970) recommends rM = 20 seconds also for manned maneuvering, targets exercis-
ing evasive maneuvers. The same value has also been found independently by other people
who have studied the problem. No information on maneuvering surface targets has yet been
analyzed. Other values can. of course. he chosen for surface targets or to reduce swttling time
as may be required. It should be emphasized that this rather low oh.wsrred maneuver fre-
quency. corresponding to rm = 20 seconds. does not necessarily imply that this is the high-
est frequency that a particular target might be capable of sustaining. On ti- contrary, most
air targets can mancuvr much more rapidly if desired. Rather- a low maneuver lreuency
is probably typical of air tagets maneuvering to achiev a particular goal such a inter-
cepting ownship or exercising their own fire control in order to release orJnac- at own-
ship. We consider values of rm anywhere in the range of 3 to 20 seconds as reall-tic.

The selection of a value of om is more difficult than that for rm . The acceleration
autocorrelation study of the target scenario demonstrates a very wide range of values for
am- For example. some targets might achieve an rms maneuver level close to one G while
others are essentially nonmaneuvcring (actually maneuvering at a very low level due to
atmospheric effects). The effect, however, of am on optimal filter performance is quite
dramatic. For example. in Figure 4.3. the steady-state value of the normalized I0-second
prediction error is plotted as a function of am for Tm = 20 seconds. For a value of ams
10 yardslsecond' (at the upper limit close to one GY. the normalized prediction error is
15.96. clearly a very poor value for GFCS applications with conventional projectiles. The
reason such a large prediction error occurs is due to the value of the current error covariance
which remains large due to the process noise.

Figure 4.3 also plots the current acceleration estimation error level which we see is
quite sensitive to am. Since the prdic:tion error equation (4.14) magnifks the acceleration
error. we find the larre prediction errors ocurring for large am. Obviously. the parameter
am has a significant effect on the filter bandwidth and. since it has such a wide range of
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values. must h e ,irefully chosen to achieve proper filter operation. The next section on
adap:ion will deal in more detail with the specification of O and rm. For reference pur-
pyss. the converye-icc of the i.onnalized prediction error is plotted in Figure 4.4 for a
r.mc of values of om and v' . Notice that the steady state values for smaller Tm (higher w.
arc nut nec-ssarih| larger for prediction since smi.iher TM suppresses prediction noise at the

satme time it increas-s filter noise.

It is also -nterestih.g to determi- the sensitivity to incorrect assumed values for the
r.mdom :ccelrationi parametc,'.. To do this. we first determine a set of parameters a%, f and
r. for the filter t(bscript ft to assume. We then allow one of the parameters to vary and

calculate the actual .jnd optimzal covarianee with the equations of Section I. We define a
figure of merit

Ot,. I) V a.,Pr tk + tr t 3)!A(-T .k +trltk) 4.17)kT
k~ T

a tile ititcerated I averatei ratio of die optimal to the actual predicted position error standard
Ileviatitml. Sim.%- o1 x"( t is aiv!ay- gre3ter than or equal to aq,,. 0 is always less than unity
and equal to one onl. for tihe optinta! cawe. We might therefore think of 0 as the d.gree to
.hiich tile s btiphimal filler matehs the optimal perforn ,nc-v. Using prediction time tP

e0 %,conlis and total run time T =50 -conds as usuai. the sensitivity results are plotted in
Figure 4.5 or three different filter bandwidths wide (w). medium iM and narrow IN). In
Figure 4 .5fal. ue fin'd it takes an error of approximately an order of magnitude in assumed
target naneuver level to pr oduce_ a 50 I-rcent optimality level i.e. when the actual error is
twice what it could e. It is alo lightily preferable if we must be in error -to underestimate
than to overvstimate tie man-uvet level am. In Figure 4.h). we find that prediction error
lercis are prctically ins-cisitive to the choice of tile maneuver time constant Ym. The reason
for this behavior is probably related to the filter-pr.-dictor offsetting effects mentioned in
the last paragraph. Notice in both figures. also. that there is very little ;if anyI discernible
difterence in -ensitivity o%. r the significant range of filter bandwidths.

The atitlhor ha% therefore cho,.,en thc random-acceleration target model over the poly-
ioiiial miotc: primariy In cause the random-acceleration model directly relates the t3agcts

kinematic, to the filter transition and pro-ss noise matrices and therefore to the filter
bandwidth. All the extr.polation equations will chang, from those presented for the poly-
nomial case. The update cqulations do not change. Specifying the one-pass initialization
completes the dc.scription of the new filter. For reference purposes. a summary of these
filter equations auppears in Table 4. 1.

kfore continuing to the next section. it should be mentioned that other nondeter-
ministic target models are under considteration for the GFCS tracking application. Brow n
and Price (1974). for example. tried a higher-order analogy of the model in this section.
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i e . acceleration rate is a exponentially correlated random variable, but found that it did not
work as well as the model discussed here. Moose (1972) discusses a very interesting model.
known as a semi-Marl-ov process. which he applied to the case of a maneuvering submarine.
The author would like to investigate the applicability of this model to the air-target track-
ing problem.

Table 4.1 Random Acceleration Filter Equation,. A Summary

EXTRAPOLATION

k, ik/k - 1) A, *(k- I/k-I1) + Atk2 (k - I/k - 1) aci 3 (k - lk -I1) (I)

Wk-1 '2 (k -I/k - 1) + Ak3 (k - I/k-I1) (2)
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Table 4. 1. Random Acceletation Filter Equations: A Summary -(Con tinued)

P, Wk- ) = P, I(k - I/k - I) + 2AtP 2 (k - /k- 1) + 2aP. 3 (k - I /k -I)

+ At 2 P2(k- I/k - 1) + 2C(Atp,13(k - I/k-I1)

+ ca2P33(k - I/k-I1) + Q, I k - 1) (4)

P1 2 (k/k- 1) =P 2(k -Ilk-l1) + A3P 3 (k -Ilk - 1) + AtP,,(k-Il/k - I

+ (a~ fjJ~tjP1 1(k - I/k-I1) + 2VP 33 (k-- I/k - 1) + Q1 2(k - 1) (5)

PI 3(k/k - 1) Yp1 3(k - I/k-I1) + -yAtP,3 (k - Ilk-I1) + alyP13(k - I/k -I)

+ Q1 3 (k - 1) (6)

P,, k/k- I) = P,k - Ilk - 1 + 201P3 (k -l/k-l1) + 2 P1 3(k -I/1k -1)

+ Q22 (k- 1) (7)

P, 1 (k/k - 1) = -yP2 (k - I/Ak--I + tYP3 3(k - I /k-bI + Q2(k - 1) (8)

P3 3 k/,k- I) -Y2 P1 (k - '/k -I) + Q33(k - 1) (9)

GAINS

I3 Wk = P, I(k/k - I)/P, I(k/k - I ) + o 2(k)1 (10)

KIMk) = P,,(klk - 1)/(P 1 1I(kk- I) + o2(k)I ( II )

K3(k) = PI 3 (k/k - I)/jP 1 1I(k/k - 1) + a2 (k)I (12)

RESIDUAL

v(klk - 1) =z(k) -, Wkk- 1) (13)
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Table 4.1. Random Acceleration Filter Equations: A Summary -(Continued)

UPDATE

k, (k/k) = k, (k/k -I) + K,(k)v(k/k - 1) (14)

..(k/k) = i2(k/k- I) I- K2(k)v(k/k- 1) (15)

.x3(k/k) = *3(k/k- I) -'- K3(k)v(k/k- 1) 
(16)

P (klk) = [ -K(k)]PiI(k/k- 1) (17)

P1d(kk) = I - K1 (k)]P 12(k/k- 1) (18)

P13ikik) =I - K,(k)]P,3(k/k- I) 
(19)

P,,(k/k) P,(k/k- 1) - K,(k)P12(k/k- I) (20)

P,3(k/k) = P,3(k/k- 1) - K,(k)Pt 3(k/k- I) (21)

P33(k/k) = P3.1(k/k- I) - K3(k)P13(kk- 1) 
(22)

INITIALIZATION

.t(0/0) = z(0) (23)

-k2 (0O) = ' 3 (0/0) = 0 
(24)

P, (0/0) = 02(0) (25)

PI,(0/0) = o. (26)

Pt 3(0/0)= 0. 
(27)

2,.,(010) = 2 (0)

P23(0/0) = 0. (29)

P33(010) = o(0) 
(30)
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Table 4.1. Random Acceleration Filter Equations: A Summary --(Continued)

CONSTANTS

-= exp (-At/" M) (31)

= TM( - 7) (32)

a = rt(+At/i" - I) (33)

PROCESS NOISE (CONSTANT)

= 2At°2/o M (34)

Q23 = AtQ31 /2 (35)

Q22 = 2AtQ23/1 3 361

Q11 = Q,,/2 37)

Q12 = 3,AtQ 1 /4 (38)

Q11 = 2AtQ1 ,/5 (39)

PREVICTION

R, (t+ tit) = ititit) + x,(t/t)t , + . 3 (tit)~lexp(-t i!)"

+ tp/r4 - I1 (40)

RECOMMENDED VALUES OF PARAMETERS

k 16 Hertz (41)

.4 = 0.1-10.0 yards/second 2  (42)

st = 3-20seconds (43)
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Table 4. 1. Random Acceleration Filter Equations: A Summary-(Continued)

FOR AIR TARGETS

a,(0) = 300 yards/second (44)

o3(0) = 10 yards/second 2  (45)

FOR SUP.FACE TARGETS

02(0) = 14 yards/second (46)

03 (0) = 2 yardsecond 2  (47)

V. ADAPTATION

The Kalman filter formulation. presented in the previous sections. assumes complete
knowledge of the linear dynamic model and the process noise covariance. In a general
tracking filter application, such as the gunfire control problem. the particular strategy being
exercised by the target is unknown. The form of the state vector and its propagation
characteristics is as&,umed and may or may not adequately represent the true target motion
over long periods of time. (We always expec. however, the dynamics model to be a good
approximation of target motion over short periods of time.) Such a situation is usually
referred to a "'suboptimal modeling" in the sense that no attempt is made to fully model the
target dynamics. The utilization of a suboptimal model often leads to large estimation
errors-a condition known as filter divergence. When divergence occurs, an inconsistency
between the error covariance calculated by the filter and the actual error covariance occurs.
Examples of such divergence problems will be shown shortly.

An adaptive filter is basically a method of adjusting parameters in order to effect a
more realistic match between the calculated and actual filter error zovariances. The purpose
of such a technique is to reduce and bound the actual error covariance when modeling errors
become large enough !o seriously affect the Ierformance. We wili find that. contrary to the
linear Kaliman filter techniques described thus far. the calculated error covariance must be-
come a function of the actual data through a coupling of the filter parameters with the
target motion. We will also find that the performance of a parti.ular adaptive filter is a
function of the procedLre used to detect divergence and of the method used to modify the
filter when divergence is detected. After the following examples. techniques of detecting
divergence and two forms of adaptive filters will be presented.
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A. DIVERGENCE AND THE BANDWIDTH TRADEOFF

We will now consider a few particular examples of target motion-aLtually driven by
target acceleration-that can lead either to a filter divergence problem or perhaps to an un-
acceptably wide-banded filter implementation. Using these examples, we will then demon-
strafe and discuss several possible techniques of filter adaptation to deal with the situation.

Let us first consider the random-acceleration filter model developed in Section IV. In
that section we discussed the values of the parameters representing target maneuverability
and maneuver frequency and found, as might be expected. that no single set of numbers
would adequately rpresent the target scenario. Rather. it was found that a range of each
parameter could be expected and that we can essentially bound the parameters by a low
maneuver level. low-frequency (long time constant) parameter set which we will designate
(oMA. ) ( where ow is I /r, ) and a high-maneuver-level, high-frequency set (ami H. wm.).
Our fundamental assumption in approaching adaptation with the random-acceleration model
is therefore

where o% . wt ) is the parameter set representing any actual target. Recall that a non-
zero choice of (oIA. - A ) is due to the fact tht an actual target moving through an actual
atmosphere will be bu.feted by turbulence (and perhaps other effects) so that (MA. . .IMA

reilly might represent inadvertent maneuvers of the target. It is important that we do not
allow the A parameters to vanish since steady-state error covariance would also vanish and
the filter could diverge due even to thc mildest maneuvers.

Let us now construct filters based upon each bounding parameter set and called the
corresponding (fixed-parameter) Kalman filters A and B. We will now exercise these filters
against several target profit.s to a.ssess their acceleration tracking perfonance. In Figure 5. 1.

the actual ".celcration of several targets is shown by the solid lines. The asterisks plot the
acceleration estimates of the A filter and the circles those of the B filter. The maneuver
parameter sets used for these filters are (Uo,1. WMA (of 'O.5. 1 '20) and I(),I. c Wi ) of
(5.o. i, IO). rhee acceleratin profiles and their two intgrals were generated on the coni-
puter. and numerically generated white noise %.,th o 5 yards was added to the true posi-
tions to simulate the measurements. It is observed that the A filter is narrow-banded in that
the acceleration estimates are relatively smooth. Unfortunately. the A filter values tend to
diverge or at least lag severely) from the true value whenever the acceleration changes
rapidly. The B filter estimates tend to usually be unbiased (since filter B is very wide-bandedi
and never really divergent. Unfortunately. the B filter estimate% always contain a large
amount of noise. even when we see that acceleration can be tracked smoothly and accurately
by the A filter. Figure 5.1 difilays dramatically the classical problem of determining the
proper filter bandwidth to yield the smoothest unbiased estimates. The paradox is that.
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while each filter hai its advantages and disadvantages, neither is really suitable (as they are)
for implementation as a GFCS tracking filter. It is therefore clear that we should look for
some method of adapting on-line the bandwidth of the filter to effect the desired performance.

Before leaving Figure 5. 1. the reader might note that these particular acceleration
profiles obviously belie our target model assumption that acceleration is a stationary. first-
order random process. Indeed. many real targets will not follow this model any mote than
they might follow a polynomial model. The point again is that we want each trajectory to
be reasonably represented by the statistics of the random process.

B. RESIDUAL STATISTICS AND MANEUVER DETECTION

When divergence occurs. the error vector (estimated state minus true state) grows large.
Founately. we are able to monitor at least partially the actual performance of tile filter
at ny given time. This is done by ob-erving the sequence of residuals (often referred to as

the "innovations sequence") and attempting to detect the buildup of a bias and consequent
yrowtli of the residuals, We can determine the statistics of the residuals by recalling the
,.,inition

ikk - I = 4.k) - Iiktk/k 1)

and the n:asurement model

k= tl(k, l k) + vtki

Substitvting for /k. %-- find

vkfk - I) = !iN) - llkkl /k (5.2)

By taking exrz.ted value", we find immediately that

IU lsfk/k- Ill = 0)

and

1IL (Kltk - I Ivr(kik Il = R(k)
(5.4)

+ 11(k) Pk/k- 1)111k)

Su[-,tituting the matrices for our model, we find that. wher th|c filter is operating optimally.
the residual sequence should be zero-mean (;aus.s-ian with variance
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02(k) = l2(k) + P1,(k/k- 1) (5.5)

It is then a relatively simple matter to determine the probability that the sampled residual
-longs to the population with the above statistics.

An important extension of Equation (5.2) can be made in the case of the actual
sampled residual. The actual residual is comprised of exactly the same error terms. art& the
-wnple expected value (denoted E;) is related in the same manner to the detw:-'! error ",nd
measurement covariance. I.e..

I:, lf k/k + -)vTk/k- I)I = RAC((k) + H, -T(k)PACT(k/k- I ) H-T(k) (5.6)

or for our casc

L, Iv2(k-.k - l)j o2A:tk

(5.7)

-AC,,(k + P: IA('f )

If we are sufficiently confidnit in our estimate of the measurement ewror variance to assume
that our filter estimate a2ik) equals aC (t I. then we find that by using Equations (5.5)
and (5.0 we might make Certain impOrtant inferences about the validity of our calculated
error covariance and. if necssaqy adjust it accordingly. If our estimate of uAC T tk) is very
inaccurte, then adaptive techniques based upon the use of such inforwation would be in-
advisable. Another tchinique to avoid this problem will !x discassed later but was not
implemented.

Rather than work with an individual residual. greater statistical sgnif canc can be
obtained by conidcring sc',r.a data samples. We will use a sample mean which. defined for

an) variable f. is

=jj 2: f"k. --k-M

It ik m,.uch nore convenient to implcment the sample mean recursively by means of a fixed
icinory lengtli averatr that will approximate the exact sample mean to 01At). This re-
cursive %ample mean is givcn al

fik) = (,fk- 1) + G2 f(k) (5 9)

whre tfli constant gains are
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G = (M- )/M - -G, (5.10a)

G, = !/M (5.1Ob)

The effective memory length (or "window") of this averager is simply T% = Mat. Of course.
this averager is not valid when t < Tj . but that does not really matter here. We will choose
a value T- that will minimize the maneuver detection time. The influence of TM on mancu-
ver detection time will be briefly considered shortly.

Using these equations as tools, it is now possible to construct various sample means in-
volving the residuals and corresponding tests for each one. For example. we will normalize
each residual with ou(k) Ito remove the transient nature of the error covariance) and com-
pute the normalized sample mean as

))OA

t= k-_M

where the subscript N refers to the normalization. It is easily seen that P, ideally is also a
zero-mean normally distributed random variable of variance I /M that can provide an indica-
tion of actual filter performance relative to the calculated (assumed) performance. We
could alternatively choose the normalized mean square residual defined as

12 (k)I - - p2(i'i l}h4(i) (5.l2)
i=k-M

We find that M • 2 is the chi-squared variable with M degrees of freedom. The expected
value of'.P is unity and the variance is two. It is therefore a relativei7 easy problem to con-
iar-ct tests concerning these variables. Other maneuver detectors can be constructed by
co,-i'.-ring the correlation of residuals. For example. it can bc shown that the autocovariance

fl, (i) = 1I:1k/k- lvTk - ijk- I -i)

should vanish for i * 0. This information forms the basis for a slightly different type of
maneuver detection. For example, the adaptive filser in the MARK 86 GFCS monitors the
signs of the residuals and declares a maneuver when a c.ertain number of successive residuals
-how the same sign. Suc- methods work very well. There are other more complicated vari-
.iions of this type. All of ttlese maneuver detection statistic,% arc similar in that each starts
with the assumption that the residuals should bc uncorrelated. zero-mean. Gaussian when
the filter is operating properly. In fact. the author could find no particular advantage of
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any one maneuver detector over another as far as performance is concerned. We have chosen.
for reasons of computational efficiency. the normalized residual sample mean (Equation
5.11 ) to construct our criterion for maneuver detection. We can now defil-e the maneuver
detector.

We will define a maneuver as any target motion that causes the filter performance, as
measured by ] . to exceed some specified value. Namely, a maneuver is declared if

t k)I >Caw,(k) = CIvIR (5.13a)

or equivalently

Wk > C2/M,% (S. 13b)

where C is a constant that determines the significance of the test. The probability of in-
dicating a maneuver when there is none (a "false detection" "ir Type I error) is

P:, ={P.(k) >C2oN(k)} (5.14)

Values of P p as a function of C can Ke found in most introductory statistics books. For
example. maneuver detection at the two- and threc-siSmia levels ( = 2 or 3) yields P'Ft)
4_;%,'e and 0.2701 respectively. In order to choose a value of C. we must consider the
false detection probability in conjunction with the cost-presumably in degraded performance-
of such false detections. Such costs are a function of 'w type of action taken to adapt
when a maneuver is declared. These costs will be considered, at least qualitatively, for the
various adaptive techniques to be. discussed. A tradeoff is involved since there is a cost in
increased maneuver detection time when the maneuver threshold C is raised. It is possible
to estimate analytically the functional dependence betwee. maneuver detection time and
the various parameters involved with detection for certain simic: maneuvers. For example.
let us consider the step acceleration target (of the type dscussed previously) under the
as,,umption that the filter is completely converged and perfectly nonresponsive. i.e.. the
filter error covariance and gains are zero. A step in acceleration a, will cause a ri'sijual bias
buildup ol1 magnitude

vbI ts) = t' (5.15)

where t, i% the time since application of a,. The bias of the normalized residual sample
mean will then Ne
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4N bia, ts) z d a.t3 (5.16)- 2 Ta 6 oTm

Maneuver detection occurs at time T0 when

VNbi.$DT) = C/V'W (5. 17;

so that

TD = (6Tm Cu,//iMa,)1i3 5.18)

Using Equation (5.5) and recalling that P, I is assumed essentially zero. we can write

0 , = a

Also so that

(5.20)
TD -- (6 C oA~f''Ma)f

Similar procedures can be used to estimate maneuver detection time for other target models.
For example. an acceleration ramp (jerque jI) would yield a residual bias of

Vbizs( t ,) = ±j, t-6

and we find

TD = (24 C o At",i- 1 '-- (1522,

Equations such as (5.20) and (5.2) are admittedly not exact since the steady-state filter co-
variance and gains are not zero and the filter's response. however small, would tend to in-
crease the time required for detection. This effect is small, however, for a nagow-bandwidth
filter. The results, on the other hand. are quite interesting. The detection time for both
cases is found to be directly proporational to (the fractional powers of) C. M and o and
inversely proportioral to the magnitude of the step change. This is intuitively satisfying
since we would expect it to take longer to detect a small maneuver than a large one or
longer to detect a maneuver with a higher threshold, a longer memory length or when
observed with the superposition of more noise. Since the probability of a false detection is
a function only of C. it is seen that the residual average does not improve our maneuver
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detector. Indeed. the residual mean serves only to increase the maneuver detection time
without effect on the false detection rite. Therefore. the sample residual mean will be
selected with MI = 1. i.e.. no memory length. If we had chosen another type of na3neuver
detector (such as estimating a residual trend). this would not necessarily be true. Notice
also that, for lte Step acceleration target, an increase in lte value of C. say from I to 3. in-
creases the maneuver detection time less. than 7 percent but improves the false detection
rate by almost a factor of 17.

We Pave chosen Equation 15. 13) as our maneuver detector. It can be shown to vieWl
performance equivalent to any of the other methods ti;scussed in this section. Results with
this detector will be presented in the following sections.

C. V'ARIABLE BANDWIDTH ADAPTATrION

Once divergence tor a -maneuver.- as we call any target motion that produces divergenc
even lentporarilyi has been detected. a method of modifying or adaptig the filter parameters
to correct the situation must be specified. There are several methods of dealing with
diveriwnmc. most of which effectively increase the gains to make lte filter more sensitive to
new data and- of course- more sensitive to noiseA.. We will consider a brief survey of these

sarius eclnkles e~cUdi t parallcl filtering to be discussed4 in the next section).

Several survey and comparisn papers on adaptation appear in the literature. M~ehra
(19- ' "classifiedi the different methods ;into four categories and discussed the relations-nips

betw..cti them 3nd the difficulties a'~sociated with each. Ilagar 1973) conducted a fairly
comprehensive investigation of lte various types of adaptive algorithms, ;tzd th.-ir capabilities
in a very useful reference. Sidar and Bar-Shlomo 11972 _) simulated and compared a number
of adaptive filters for appl; -ation to their gyro compass proble m. Particular emphasis was
placcid on the uzwinski-tvi _ of covairiance watching Ito be discussed shortly).

Thenre are severA variants of a technique which the author refers to As bias corrcctors.
rDemetry ,nd Titus E1968) sugge~qcd a bias corrector. whereby if a maneuver is detected one
reprocesses th;: most recent data with a wider-bandwidth filter. Friedland 1 1909) devised a
technique, whereby the state is augmented with a bias vector which is- then estimated in an
effectively decoupled estimator. NicAulay and IEnlinger I lQ73) suggested a multiple-order
derivative polynomial filter whereby the lower order (n = ID would be used unless a maneuver
is detected. If a maneuver is detected. then a higher-order In =2) filter is initiali/ed. E-
senttially this tiechnique attempts to break the trajectory into piecewise polynomials with
the break-points defined on linec.

Other investigators have tricd to directly a-dapt the memory length or the gait- matrix
itself. Epstein t(1971 ) used the memory length of the filter as the adaptive variable and
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varied the memory as a function of the residual series. Mehra (1972) presented a new
algorithm for the direct stfmation of 0.e optimal gain. Hampton and Cooke (1973) also
designed an adaptive filter for tracking high-performance maneuvering targets. This tech-
nique uses the orthogonality property of the residual sequence to automatically track the
optimal gain levels.

There are some interesting algorithms that attempt to "learn" the dynam, :. they
process the data. Mehra ( 197 1, # 1 ) devised a technique to actually estimate on hie es-
sentially all of the (assumed) linear system, i.e., the order, the transition matrix, and the
measurement and process-noise matrices, even when the processes are nonstationary (of a
certain type). The author has not actually tried this algorithm but strongly suspeLts there
would not be enough time or computational capacity to use this technique. Of course, one
could i..ver be certain that, once a strategy based on past data was determined, the strategy
would continue to be employed in the future. But, of course, that factor is merely a part

of the difficulty faced by the predictor designer in any case.

Divergence can be considered as having been caused by an inaccurate estimate of the
noise covariances. It is only natural then that attempts are made to estimate these covariances
as well as the state. Mehra (1970) introduced a method to simultaneouslh estimate Q and R
when the stilte model was assumed. 'eiss (1970) surveyed and discussed techniques of this
same type. The principal objective of these algorithms is to effect a correspondence between
the actual covariance and the calculated covariance-- hence the name for these methods.
"covariance matching." Nahi (1972) and Soeda and Yoshimura (1973) developed pro-
cedures to more or less .ptimally modify the calculated error covariance to prevent diver-
gence when the residual is not likely to have come front the calculated distribution. A
pioneer of the covariance matching technique, Jazwinski (1969), developed the concept
(usually known by his name) of preventing divergence by covering modeling errors with
noise and adaptively estimating the noise level. The Jazwinski method, at least in a con-
cept, ,I level, is the approach selected for our application. It is particularly well suited for
our purpose since the random acceleration model tells us much about the. proper structure
of the noise process and its relation to the target kinematics.

The Jazwinski technique uses "rev(tual feedback" to specify the proper level of process
noise to add. The process works as follows. In the event of a maneuver detection, we make
use of Equation (5.6) (assuming accurate knowledge of the measurement noise covariance)
to :qtimate the level of actual process noise. One assumes that the actual extrapolated error

covairiancc consists of three !erms. i.e.,

PACT(k/k- 1) = 0(kt k - 1)P(k- i/k- 1) T(k k- I) + Q(k- I) + Q*(k- I ) (5.23)

where the lirst two terms on the righthand side represent the calculated error covariance
with a snall process noise covariance Q assumed by the filter. The term Q* is effectively
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added to balance the equation. If there is no maneuver detected, Q" is zero. It should be
noted that it is not possible to uniquely specify Q* with this equation. We can only deter-
mine HQ* HT or Q* 1 for our case. This is not particularly troublesome as we can choose
sonic normalized form of the Q* matrix such as the random acceleration model process
noise matrix to automatically define the other elements of Q* as a function of Q1 I . For
our case. we could calculate

Q*1(k- 1) = j-&(k)- I/M! [o2(k)+Pti(k/k- ])1 (5.24)

when a maneuver ,, -- detected, calculate the remaining elements of Q* with the Singer
form, and add Q'1 he error covariance. This technique was simulated and was found to
yield fairly good -tive filter performance. Unfortunately. this adaptive filter would oc-
casionally display ereatic behavior and generate unreasonable error covariances. In order to
eliminate this problem and properly constrain the error covariance, a different means of
specifying Q" was selected.

We therefore return to our original assumption that the target maneuver level--and sub-

sequent process noise-is bounded by the A and B parameter sets. Therefore, in the absence
of maneuver detection, process noise corresponding to set A will be added and, if a maneuver
is declared. Q . corresponding to set B. will be added.

That is:

if [f.(k)< (' 2 / MI. then Q(k - I = QA. (5.25a)

if[ ,2(k) > C2 !M.thenQ(k- I) = Qe. (5.25b) .

If a maneuver is declared, sonic time will elapse before Q builds up the error covariance
matrix. Another obvious alternative is to simply reset the error covariance in order to obtain
a faster iesponse, This technique was rejected. however, since one must pay a very large I
price for a false detection. Using Equation (5.25). it is entirely possible for the maneuver

ietc, or to turn off before the error covariance builds up to the steady-state value. Con-
S, .ally. Figure 5.2 shows the sequence of events. Initially. the target is not maneuvering

and he filter, using the A parameters, is tracking acceleration very well. After the maneuver
occurs, an interval of time elapses before the maneuver is detected which we have been re-
ferring to as "'dgt,,Cion. Once the maneuver is detected and we start adding Qa. it takes
another amount of time. called Tadp t . for the filter to "open" or to increase the error co-
variance sufficiently to remove the bias. When the maneuver detector decides the bias is
gone and turns off, the filter returns to adding the small process noise QA. The time re-
quired to return to steady state with the A parameters is called TrccinVtg.
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Figure 5.2. Conceptual Example: Single Variable-Band Adaption

In Figure 5.3. the example accekration profiles are shown being tracked by the single.
adaptive, variable-band% idth filter. The maneuver parameter sets are the same as those used

I' in the previous nonadaptive examples. The maneuver detector was operated at the C = 3
(sigma) level to minimize false detections and no memory tM = I ) to minimize detection
time. It is observed that this technique tracks rather smoothly while improving the bias
error. There tends to be some overshoot when the filter adapts because it was initially
lagging and builds up excessive rates in order to catch tip. The filter appears to respond well
(as expected) to the step change in acceleration. The predicted detection time of 1.65 sec.
apparently matches the simulation quite well. The variable-bandwidth or adaptive filter
represents a marked improvement in accuracy over either of the fixed-bandwidth filters
discussed previously.

D. DUAL BANDWIDTH ADAPTATION

Upon considering the single-variable-bandwidth fi!ter just discussed, it was felt that
certain improvements could be made in the adaptive performance. Ideally. when a maneuver
has been detected, one would likely reprocess the measuretrents over some interval
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immediately preceding current time with a wider-bandwidth filter so as to remove the bias
error which presumably has been occurring. Unfortunately. our applicatioi essentially de-
mands a fully recursive filter in order to efficiently implement the same on a limited real-
time computer. It would be very difficult to interrupt normal processing in order to re-
process past data. The best answer obviously is some type of recursive wide-bandwidth
filter operating in parallel to the "main filter" which can be used to (more or less) instan-
taneously remove the bias error once it has been detected. Such a technique has the obvious
advantage of eliminating the last two waiting intervals of the single variable bandwidth
filter- the adaptation and reconvergence times. If done properly. it can also eliminate the
overshoot after adaptation.

The dual-bandwidth filter would work as follows. Two filters. A and B. corresponding
to the respective maneuver parameter bounds. would operate simultaneously. The filter
would only output (to the FCS) the state vector of filter A. ,A . If divergence of filter A
is detected, using the detection criterion of Equation (5.25). the state vector of filter B.
kii. which should be unbiased. is put into filter A. i.e..

If IVA(k) > C2/MI. then. i (5.26)

C'onceptually. we want the adaptation to work as in Figure 5.4. The A filter is outputting

smooth estimates of the state until the maneuver is detected. Using Equation (5.26). the A r
filter then *jumps" to the current (unbiased) estimate of the B filter and no adaption or
reconvergence is required. Admittedly. the output vector SA will be discontinuous, but in L
this situation Jn represents the best information available. An important consideration
was the decision as to what modification, if any. should be made to the A filter bandwidth. r

Three options were considered and tested.

Theoretically. if one resets the state estimate of A to that of B. the bandwidth should
be similarly reset. That is. if a mafleuver is declared and Equatiol (5.26) is in effect. then

Option 1: PA = PH

This option was found unacceptable, however, as one pays a high cost of a false detection
since the long reconvergence time has not been eliminated. Leaving the A bandwidth
unchanged. i.e..

Option 2: PA = PA

was desirable since it did net suffer the disadvantages of Option 1. The particular maneuver
detector we are using, however, did not do well with Option 2 since the large random errors
of the B filter look like biases to the A filter and repeated maneuver detections tended to
occur. In order to eliminate this problem. the author decided on
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i Figure 5.4. Corceptual Example: Dual-Bandwidth Adaptation

i"Option 3: P,% = PA + Q8 (5.27)

r i.e.. a gradual widening of the A filter bandwidth which eliminated the cyclic detections and
maintained a low cost of a false detection. In Figure 5.5. the same acceleration profiles
were simulated with the same parameters for the maneuver statistics and maneuver detector
but with the dual-bandwidth filter. The acceleration estimatiot, errors were reduced even
further and the overshoot errors disappeared. The root-mean-square acceleration estima-
tion error was reduced on the average by 25 percent over the single-bandwidth filter.

Another interesting possibility. only superficially examined by the author to (late. in-
volves the generation of an output vector. xo. which is always a linear combination of x
and !__B: i.e..

_'(1 = W.-% + (I -W)_ ib (5.28)

where the weighting factor W is a function of the residual statistics-both sample and
calculated-of both the A and B filter. An obvious advantage of such a technique would be
to construct a (more-or-les) optimal combination of the A and B filter with continuity of
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the output state vector simply a by-product not without merit of its own. Thorpe (1973)
developed a dual-bandwidth filter concept in which target maneuvers, assumed to be relatively
infrequent events were modeled by introducing a binary random variable in the target state
equation. fie used the likelihood ratio for the d-tection of a maneuver to determine the
weight W. Brown and Price (1974) studied the .ility of a bank of parallel filters, each with
a different bandwidth, using the random acceleration model. A combined estimate was
constructed on the basis of a hypothesis test of the probability that each filter is the correct
one. Alspach (1973) also constructs a bank of parallel filters and uses Bayesian techniques
to estimate the optimal gain. Moose (1972) also uses Bayesian methods to determine the
relative weighting of the output of a bank of Kalman filters to form the best combined
estimate. The author believes these techniques deserve further consideration for implementa-
tion in a GFCS application.

In Equation (5.7). we related the sample residual variance to the actual measurement
and estimation error variance and n,entiored the problem that if our estimate of the
measurement variance is poor then maneuver detection ba.ed upon that equation would not
work well. To illustrate, let us consider the sensitivity of the adaptation process to large

errors i. cur estimate of measurement error. If we greatly underestimate the measurement
error level. tlin the sample mtan residual will often exceed the expected value due to
measurement error. and false maneuver detections will result. Unfortunately. such fal.w de-
tections lead to a filter bandwid!h change in just the opposite direction of the proper adapta-
tion. Initead of increasing the gaini and thereby weighting the measurements heavier, we
should increase R. thereby decreasing ti,.! gains. Conversely. if we groely overestimate the
measurement error variance, then maneuver detection is delayed (perhaps indefinitely) so
that we do not increase the gains to follow the target. For the application intended for this
filter. thi% problem should not occur. as good estimates of the sensor statistics should be
available in order to properly model them.

Another approach which the author wishes to pursue is to statisticaliy analyze directly
the residual stjuence for each filter of a parallel filter bank without regard to the cAlculated
andior assumed statistics. In other words. we simply look at each residual sequence and
pick the smoothest unbiased one. This technique could also be incorporated with the weight-
ing technique of Equation (5.28). The author has experimen!ed with such a residual-
analysis/weighting-factor approach but has not yet determined a method which works well.
Brown and Price (1974) aso tried a variant of this approach with reasonable success. The
principal advantage of such a techn;que. if workable, would be that it has essentially no
sensitivity to an incorrect estimate ol' the measurement statistics.

In summary. the author has tried or at least studied many different adaptation tech-
niques but has to date found none that works any better than the one presented. There
appear. however, to be a large number of altenatives in the literature (some of them men-
tioned in this sectici,) that offer promise of improvement and which should be investigated
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further. The concept of a bank of filters of various bandwidths is particularly appealing.
Sensitivity to incorrect observation error statistics is probably the most serious problem that
must be addressed. This problem will be discussed in a future report.

VI. SERIALLY CORRELATED MEASUREMENT ERROR

In Section i, the conventional discrete Kalman filter was described. An important and
necessary assumption for that development was that the measurement error be -white- or
uncorrelated. In Section Ill. we found that it is desirable to process data at the nighest rate
possible when the nicasurement errors are independent. Unfortunately. the assumption of
white noise and tile desirability of a high data rate are often incompatible when tising
measurements frum real physical systems. For example. truly white noise never actually
exists in an real system. When sampling data from such a system. eventually one usually
finds the noise autocorrelated (serially correlated) when observed at some sufficiently high
data rate.

In this section, we will address this problem. We will present a common noise model
and a modification to the conventional Kalman filter that deals with this model. We will
find that one can quantitatively assess the degradation in performance due to autocorrelation
and can perform simple sensitivity ar ilyses to determine the effects of incorrect estimates of
the statistical parameters.

A. NOISE MODEL

The measurement model for the Kalman filter, as presented in Section If. is

z(k) = l1(k) k) + y1k)

where it was assumed that

E l[(k)l = 0

and

E LV(j)VT(k)l = R(k)6ik

We will now replace the assumption of the last equation with the more general assumption

that the measurement noise v is the output of a linear discrete dynamic system driven by
white noise. I.e..

v(k) = *,(k.k- I)1(k- 1) + t(k- 1) (6.1)
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where*

E lf(k)J = 0 (6.2)

and

E Jt() T W) = R'(k) 6jk (6.3)

Sage and Melsa (1971) point out, "Although this is not the most general form of colored
noise. it is probably the most general practical form. One often has extreme difficulty in
establishing the parameters of such a simple model, so that it is hard to consider the use of

any more general form." It is easy to determine that

R(k) = *(k. k- 1)R(k- 1) ,T (k. k- 1) + R* (k- 1) (6.4)

and that the autocovariance of v is

E LY(k)XT(k - I )= '(k.k- I)R(k- D (6.5)

These equations are useful in defining , and R*.

Now let us consider a particular type of first-order process chosen for the measure-
ment error model for this applicatioa. An exponential autocorrelation function is found to

be both convenient and reasonably matches power spectral density information that has

been estimated for candidate se nors for the MARK 68 GFCS. The noise propagation equa-

tion for this case is:

w k) = p(k)v(k- I) + a,(k)t(k- 1 (6.6)

where

p(k) = exp [-At.iik) (6.7)

is the correlation coefficient for lag t. The standard deviation of ihe white noise driving

term is

a,,(k) = o(kD /l - P- (6.8)

and

a(k) E Ev z (k)W (6.9)
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as before. We will be primarily concerned with constant values of 7 between 0 and 0.30

seconds. Although we will consider parametrically a wioer range of values, note that this
process is not. strickly speaking. assumed to be stationary or Gaussian although, in actuality.

,t is only slowly varying and slightly non-Gaussian.

A digital noise gentrration program. required for simulation purposes. is discussed and

presented in Appendix A. The algorithm, based upon a paper by L. F. Balas (1967). will

generate noise of the type assumed by Equations (6.6) to (6.8).

B. RESTRUCTURED KALMAN FILTER

In this section. the details of applying an algorithm to process data with autocorrelated

measurement noise (of the type di-cussed in the previous paragraphs) will be presented. The

algorithm, from Sage and Melsa (1971 ). is reproduced in Table 6.1. Before substituting the
matrices for our system into the algorithm. it was found convenient to rearrange the given

equations for our purposes. The original form of the algorithm consists of two processes:

smoothing and fiftering. The author found that it is possible to rewrite these equations so

that the algorithm appears to be of an extrapolation-update form which, of course. is the
method the conventional Kalman filter in Section I! is written in. It was found that this

form requires less computation than the original and c_'Jn be easily related to the white noise

filter. It is pertinent to note at this time that the Sage and Melsa algorithm was chosen over

the augmented state approach since the former does not require an increase in the dimepsion

of the state vector and does not result in ill-conditioned computations. The authors prin-

cipally responsible for the algorithm in Sage and Melsa are Bryson and Henrikson ( 1968) who
discuss the relative merits of the two approaches.

Let us now consider the smootherifilter algorithm in Table 6. 1. Notice first that the

residual for the smoothing and filtikring equations. Equations (8) and (9). are identical. We
will define this new a priori residual as

*(kik- !) = zk) - *(k.k- I)z(k ,-I H* (k- l)x(k- l/k 1) (6.10)

If we substitute the definition of |1'"k - 1) from Equation (7). we find we can write

P'(kik- ) =_(k/k- I) - *qk.k- )ek - Ilk- 1) (6.11)

where

sk/k- 1) = z ( k) - HWk)xj/k- I) (6.12)

is the usual residual for the white -noise filter and
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Table 6. 1. Smoother/Filter Algorithm for Autocorrelated Measurement Noise

MODEL

x(k+I) = 0k+i. k) AM + t(k) (I)

OBSERVATIONS

Z(k) = H(k) x(k) + _v(k) (2)

k + 1) = 4(k + 1. k)i(k) + Vic) (3)

STATISTICS

Ellyk) = Elf(k)j = Ewj) T (k)f 0 (4)

EIwj)wT(k)I = Q(k)bjk (5)

Ej(j)tT(k)j = R*(k)61k (6)

DEFINITION

H*(k- 1) = H(k)o(kk- I) - *(k.k- I)H(k- 1) (7

SMOOTHER

i (k -- I/k) =.(k Ilk 1 1) + Ks(k- I)i(k)

- ,(k.k- l)Z(k- I) - H*(k - 1) (k- I/k- I)] (8)

FILTER

i(k/k) 0(k. k- 1).(k- I/k) + Kf(k)I(k)

- 4'(kk- l)z(k- I) - H*(k- l)i.(k- I/k- )1 (9)
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Table 6. 1. Smoother/Filter Algorithm for Autocorrelaced Measurement Noise-.(Continucd)

SMOOTHER GAIN

K,(k- 1) = P(k- ilk- !)H*T(k - I)|H*(k- I)P(k- Ilk- i)H*T(k- I)

+ R*(k- 1) + H(k)Q(k- l)HTfk)} "' (10)

FILTER GAIN

Kt(k) = Q(k- I)HT(k)IH*ik - !)P(k- I/ti- I)H*T(k I)

+ R*(k - I) + t(k)Qk - i)IIT(k)l -I  (11)

SMOOTHED COVARIANCE

Ptk- I/k) = If - K.(k- I)H*ik - i) P(k - Ilk - I)

If - Kk- I)H*k- i)t + Ktk- )jR*(k- 1) + H(k)Qik- )H(k)J Kt(k- 1) (12)

FILTERED COVARIANCE

P(k/k) =(k. k- i)P(k- lik,,T(k. k- Ii + Qik- 1)

- K k)H*(k - iP(k - I/k - IH*Ttk- 1) + R*tk- I)

+ H(k)Q(k- I)HTk)IKT(k) - O(k. k- I)K,(k- I)H(k)Q(k- ')

- Q(k- I)HT(k)KS(k - I)OT(k.k- 1) (13)

_ k- I/k- II = z.k- 1) - H(k- l)k(k- Ilk- I) (6.13)

is the a psteriori residual from the previous filter cycle. We will now define

r/(k) = (k. k - D)E(k - 'k - D) (6. 14)

which is essentially the correlated portion of the old residual that we want to remove.
Therefore. Equation (6. 1) becomes
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v*(k/k - 1)= _(k/k- I) - r(k) (615)

Since the smoother and filter equations are of similar form, it is easily seen that the two
equations can be combined to produce -extrapolation- and -update" equations. identical
in form to the white noise filter. I.e..

x(k/k- it = (k.k- l)i!k- I/k- 1) (6.16)

and

X.(kjk) = , kik- I ) + *k) v*(kk- I) (6.17)

where

K* k " 4k.k l)K,k- Ii + Krtk) t6.181

is the equivalent gain.

Now let us consider the gain matrices. Notice that the inver.- of the ma.rix

Glk) = i*vk- ItPtk- Ilk- li Ht*Ik- ) +R*(k- 1) + tlk)Q(k- 1IiT k 6-19i

appears in mith pin equations. i.e..

Kj.t- 1i = Plk- tk- Ilt!abtk- tG lk (6.20)

and

Kpki = Qik- flHTIk)G lik} 6.213

Therefore

KO(k) = I0k.k- ;}Pfk- I/k- l!* T (k- it+ 0(k- lI!IlikijG-'(k) t6.22)

By defining the extrapolattd covariance as before. i.e..

INkk- I) =(k.k- IlPik k-1- ) k. k - l + Qk- ii (6.23)

we can then write

K*(k) = P(k;k - I)HT(k) - Alk.J (. Jikl (6.241
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and

G(k) = H(k)P(k/k - I) IT(k) + R*(k- 1) + B(k) (6.25)

where

A(k) = 0(k,k- l)P(k- I/k- 1)HT(k - l)1*T(kk - 1) (6.26)

and

B(k) = I(k,k- l)H(k l)P(k- 1/k- 1)IH'(k- l) ' 1s(k,k- 1)

- H(k)o(kk- I)P(k- '.k- I)HT(k - l)4T(k,k - 1) (6.27)

- 4(k.k- l)H(k- I)P(k- 1/k- I)OT(k,k - I)HT(k)

Obviously, if * vanishes, then both A and B vanish and R* = R. We therefore recover the
original form of the white noise gain equation.

Now we will consider the error covariance equations. The smoothed error covariance
equadon. Equation (12). can be rewritten in a much simpler form by expanding thr !..-.t
term and recombining, making use of the gain equation, i.e.,

P(k- I/k) = P(k- I/k- I) + K,(.. l)H*(k- l)P~k- I/k- I)H*T(k - l)KT(k- 1)

P(k- I/k- 1)[J*T(k - I)KT(k- I) • K,(k- l)H*(k- l)P(k- I/k- 1)

+ K,(k-I)[R*(k- 1) + Htk)Q(k- 1) HT(k)I KT (k- I)

P(k- I/k- )+ Kk- l)G(k)KT(k- 1) "'1k- ./k- 1)H*T(k - 1)Kt(k - !)

- K,(k- :)H*(k- 1)P(k- l/k- I)

- - K,(k- l)H(k- 1)i P(k- i/k- ') (6.28)

Using thi. smoothing gain uquajion and the i,:t that P and G are symmetric, we can also
,:.i,: this equation as

P(k- I/k) = P(k - Ilk - Ks(k - 1)Ck)K,(k- 1) (6.29)

Using the filter gain equation. we c-m also simplify the filtered covariance equation.
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P(k/k) - qK.k- 1)P(k- lIk)OT(k,k - 1) + Q(k- 1) -Q(k- 1)HT(k)KT(k)

0(k. k- 1) K,(k- 1) H(k) Q(k- I)HT Q(k- 1) HTik) KT(k- 1) OT(k, k - 1)
(6.30)

0(k.k- i)P(k- l/k) T(k.k - 1) + Q(k- 1) - Q(k- 1) HT(k)K*T(k)

0(k.k- 1)K,(k- 1) H(k)Q(k- 1)

By substituting Equation (6.29) for the smoothed covariance and then for the smoothing
gain. we find

P(k/k) = 0(k.k- l)P(k- I/k- I)OT(k.k - I) + Q(k- I)

- 101%,k k- 1) K,(k- I)] G(k)[10(k. k- 1) K,(k- 1)] T

- Q(k- 1)HT(k) K*T(k) - O(Kk- l)Ks(k- l) H(k)Q(k- 1) (6.31)

= Ptk/k - 1l) - [K*(k)- Q(k -I)HT(k)G -I (k)I G(k) IK*(k)- Q(k- )HT(k)G - 1 (k)T

- Q(k- I)HTK(k)K*T k) - IK*(k)-Q(k- I)HT(k)G -I(k)I H(k)Q(k- 1)

= Pik/k- I) - K*(k)G(k)K*T(k)

which is of a form identical to the white noise filter. A summary of the equations for the
equivalent extrapolation/update algorithm is found in Table 6.2. Upon comparing this
algorithm with the white noise filter (Table 2. 1 ). we find that the correlated noise algorithm
requires the additional calculation of A(k). B(k) and i7(k). A FORTRAN IV version of this

r algorithm. called CORKAL. was writi.n by the author and can be found in Appendix A.
We now apply this algorithm to our model.

Our model will now consist of the current version of the dynamics and prediction. as
developed in the previous sections. but we will add the coi. lated noise model. The measure-
ment noise transition matrix is

*(k.k- 1) '4' Ip(k)j (6.32)

The standard nieasurLment noise convariance matrix R will be replaced by the white niea,-
lir-cnl elt noise.

R*(K) = law,(k)i (6.33)
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Upon substituting these matrices into the algorithm, we find that the complicated matrix
expressions reduce to rather simple algebraic calculations for our problem. The matrix A is
(3 X I), and B and 77 are scalars. The algorithm with the indicated modif ications can be
found again summarized in Table 6.3. (None of the filter algorithms considered in this
section are adaptive. The adaptive versions are exactly analogous to the white noise models
in Section V.)

Table 6.2. Equivalent Extrapolation/Update Algorithm
for Autocorrelated Measurement Noise

MODEL

x(k + 1) = 0(k + 1. k)x(k) + w(k) (I)

OBSERVATIONS

z(k) = H(k)x(k) + v(k) (2)

v(k + I i = '(k + 1, k)v(k) + t(k) (3)

STATISTICS

EJEW1k = Eft(k)I = Qy(j)tT (k)] 0 (4)

E~wj)w (k)J Qk)jk

EIt(j)tT(k)I R*(k5 1 k (6)

STATE EXTRAPOLATION

i(klk -1) = 01k. k- )j(k -INk- 1) (7)

CO VARIANCE EXTRAPOLATION

A(k) = (,k-IPk-I )Tk-1*~.k-1 (8)
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Table 6.2. Equivalent Extrapolation/Update Algorithm
for Autocorrelated Measurement Noise--(Continued)

B(k) - *(k k - 1)H(k - 1)P(k - 1/k - 1)HT(k -1) *T (k, k -I)

-H(k).0(k, k - )P(k - IN/- 1)HT(k - 1)4T(k, k -1)

- I(k, k- I)H(k - l)P(k - 1/k- I),t(k,k - I)HT(k) (9)

P(k/k -1) = (,k-IPk- / ek-1 + Q(k -1) (10)

GAIN

G(k) H(k)P(k/k - lDH T(k) + R*(k - 1) + 8(k) (11)

K*tk) IP(klk- l)kTtk) - A(k)I1(k) (12 )

STATE UPDATE

i(klk) = k/k- 1) + K*(k) L7(k) - H(k)i(k/k - 1) - ?n(k)I (13)

COVARIANCE UPDATE

Ptk/k) P(klk -1) - K(k)G(k)K *T(k) (14)

A POSTERIORI RESIDUAL

t(k) * 1(k. k- 1)1 Wk) - H-(k - 1) i(k - Ilk - I)J ( 15)
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Table 6.3. Filter Equations for Correlated Measurement Noise: A Summary

STATE EXTRAPOLATION

k, (k/k-I1) = k, (k -Ik- 1) + Ati 2 (k- I/k- 1) + cd3 (k - I/k-I1) (1)

i 2 (k/k- 1) = 2 (k- l/k-l1) + 33(k - I/k-I1) (2)

i.3 (k/k- 1) = y*i3 (k- I/k-I1) (3)

CORRELATION MATRICES

A, (k) = p(k[PI I(k -I k -I1) + Atpl 2(k- I/k- 1) + otP,3(k-I/k-1)I (4)

AI(k) = p(kfPI 2(k - I/k-I1) + j3P 3(k - I/k - Y)] (5)

A 3(k) = p(k)'YP1 3(k - 1/k-) (6)

B(k) = p2 (k)PI I(k - I/k-I1) - 2A, (k) (7)

CO VARIANCE EXTRAPOLATION

P, I(kk- I) =P, I(k - Ilk-I1) + 2AtP172(k - I/k-I1) + 2aPi 3(k - I/k-I1)

+ i2,(k - Ilk-I1) + "a2a~ 3(k - I/'k-I1) + C(2 P33(k - Ilk-I1)

+ Q1 1(k- 1) (8)

P1 2(k/k - I I = P1 2(k - I/k-I1) + 1 P3(k - I/k-I1) + AtP2 2(k - I/k-I1)

+ (Cf+j3At)P,13(k -Ik- 1) + op$P33(k -1/k- 1) + 012(k- 1) (9)

Pi 3(k/k- I) = IfP1 3(k I/k-I1) + -yAtP,I(k - 1/k-I1) + OrYP33(k - I/k-I1)

+ Q1 3 (k-1) (10)

1~kk ) = P,)2(k - 1/k-I1) + 2j3P,3(k - I/k- 1) + J 2 P33(k - Ilk-I1)

+ Q22 (k- 1) (11)
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r~)Tab 6.3. Filter Equations for Correlated Measurement Noise: A Summary-(Continued)

P,3(k/k - 1) = yIP 23(k - I/k - 1) + O-7 P33(k -I/k - 1) + Q23(k -1) (12)

P33(k/k - 1) = yf2P33(k - INk- 1) + Q33(k- 1) (13)

G;AINS

G(k) =P, I k/k- 1) + a4(k -1) + B~k) (14)

K~fk) 1P I(kk- 1) - A,(Wj /Gfk) (15)

2-k = P12(k/k - 1) - AI(k) IG(k) (16)

Ktk) = P13(k/k- 1) - A3(k)IIG((k) 17)

RESI DUAL

V*(kik - ) =z(k) - *j14k"k - 1) - 'ilk) (18)

STATE UPDATE

i, ik/k) = Rtklk - 1) + K~tk)v(kik -1) (19)

= Ak k ,) (k/lk-- 1) + K%*tk)v(kik- 1) (210)

W1kk) = x 3 k/k - I + K *(kWp(klk - fI

i(k + 1) = p(k + 1) jzlk) - k, (k~k)j (2

COVARIANCE UPDATE

P, I k/k) = P, I(ONk- I ) -G(k) K *(k) K t(k) (23)

F11(k/k) = P12(k/k- 1) - G(k)K(k)K(k) (24)

P13(klk) = P13(k/k - 1) - CG(k)K~ik)K*fk) (25i

P,,(k/k) = P,,(k/k - 1) - C-(k)K*(k)K*(k) (26)
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Table 6.3. Filter Equations for Correiated Measurement Noise: A Summary-(Continued)

P2 (kk =P 2 (/ 1 ) - G(k)K*(k)K*(k) (27)

P33(k/k) = P33(k/k- 1) - G(k)K*/k)K3(k) (28)

INITIALIZATION

i1 (0/0) =Z(0) 
(219)

-'2 (0/0) = 3 (0/0) 0 (30)

p1 /,)= U2 (0) 
(31)

p, 2(0I0) = 0. (32)

P1 3(0/0) = 0. (33)

=22(00 (= ) 034)

P300)= 0. (35)

p33(010) = 020) 
(36)

CONSTANTS

-Y ex p (-At/T4 ) 
(37)

j~'r~ l -y)(38)

71= i(Y+At r'4-I (39)

p =cxp (-At/T) 
(40)

PROCESS NOISE (CONSTANT)

Q3= 24to2/.rM (41)
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Table 6.3. Filter Equations for Correlated Measurement Noise: A Summary-(Continued)

Q23 = AtQ33/2 (42)

Q2= 2AtQ 2 3!3 (43)

Q13 = Q22/ (44)

Q12= 3AtQ4 /4 (45)

Q -1 2'tQ, 2/5 (46)

PREDICTION

l(t+tp/t) = M,(t/t) + Xl(t/t)tp + i 3 (t/t)T"[exp(-tpiTp)

+ tp/rp - I1 (47)

C. RI-SULTS AND SENSITIVITY

We will now apply this algorithm to assess the effect of measurement correlation on
filter performance. The latest version of the filter and predictor. as developed in previous
sections. remains the same ir. form. The correlated noise filter simply adds some additional
terms. It should be noticed that the cas, ofT = 0 (white noise) recovers the identical results
as before. Figure 6. 1 presents the results for this case and also those with several other
values of up to r 1.0 second. As expected. the presence of autocorrelation in the measure-
ment errors tend to degrade filter performance both from the standlpcint of settling time
and steady state values. This is explained by the fact that the data being processed is not as
informative (due to the presence of the random bias) as independent data. In fact. the
performance degradation is rather severe when the correlation time is greater than 0. 1 second.
Of course, the amount of serial correlation is a function of the particular sensor system and.
therefore, not a parameter under our direct control. From a software standpoint, we simply
have to live with whatever sensor autocorrelation and subsequent performance degradation
with which we are presented. It is hoped. however. that this consideration will be properly
weighed. undoubtedly along with many others. when decisions as to a choice of sensor suits
are effected.

For the one-dimensional work. values of the measurement error standard deviation of
o = 5 and 20 yards were assumed and used throughout the report in all sections that den!

with only one-dimensional filtering. In fact. we have always normalized our criteria
a, (t + 10it) by a as if al (t + 10 t) were then independent of u. While this is truc for
certain cases (see Section Ii. for example), it is not exactly true in general. Therefore. in
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this section where we arc considering the effect of one uncontrollable sensor parameter T. it
seems appropriate to consider another. i.e.. a. In Figure 6.2. we have therefore plotted a few
cases with different parameters in order to see the effect. Examples with white noise (r = 0)
and one with colored noise (r = 0.30 seconds) were chosen. As can be seen. the effect is not
large but is not negligible. We find that the larger the value of a. the smaller the steady-state
value of o (t + 10it). This indicates that the actual performance criteria. aI (t + I0/t). has
less than a one-to-one sensitivity to o.

k = 16 terU 'M = 0.1 ,.,ds/s.con

02(0) = 300 yards/second Tu = 20 seconds

0"3(0)= 10 yards/second2  Tp = 20 seconds

tO

b

b- (cr")
1(0,0.3-2)

,0 __. (20,0.30)
(10.0)

'-" \ ___(40,0.30)

(20.0)

(40,0)

0 t0 20 30 40 5o

TiME t (SECONDS)

Figure _6.2. Correlated Measurement Noise Filter ,tnd Various
Combinations of o and T Normalized Standard
Deviation of Predicted ( 10 second) Position Error
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While previously discussing the question of a reasonable range of values for r. we
alluded to the fact that we cannot always expect " to be the same constant. in fact. we
should expect our estimates of -he sensor statistics to merely approximate the average
behavior of the sensor system. When the sensor system is operated under various conditions
and tuned by various personnel, we should expect some variability from our estimates to
be realized. We then want to consider the degradation in filter performance-i.e.. the
sensitivity when the actual sensor parameters are other than those assumed by the filter.

in order to do this. we must again calculate the value of the actual covariance when the gains
are computed subop!imally (with the wrong values of r and a denoted by the subscript f)
and compare this .)variance with the optimal cavariance. For the serially correlated measure-
ment error filter. the actual covariance is propagated by Equation (2.16) in the extrapola-
tion stage (the same as the white noise filter) and by the following equation for the update.

PA('T(kk) = PACT(kk- 1) - IPA('T(k/k- )HA.T(k)- AA(TkJ KT(k)

- Klk)IIIACT(k)PACT(k/k- 1) - AT~cTk)I (6.34)

+ KMk)GACrtk)KTk)

where AA(T~k). BA(-Tfk) and GACT(k) are defined in Table 6.2 with the actual values. We

again use 0. as defined in Equation (4.17). as our figure of merit to measure optimality.

In Figure 6.3. 0 is plotted for our standard problem t = 10 seconds integrated for
T = 50 seconds. In (a). the ratio of the actual to assumed value oft is allowed to vary from
0 to 2 for several assumed values of Tr. Similarly in (b). the ratio of the actual assumed
value of a is allowed to vary from 0.25 to 2.00 for both white noise (7 = 0) and colored
noise (t = 0.30). In both cases. we find greater sensitivity when we overestimate the param-
eters (f > r and of > a) and only very moderate performance degradation when we under-
estimate. In either case. it takes a severe error in the sensor parameter estimates to seriously
degrade the Kalman filter. This is somewhat surprising and comforting since such filters
tend to rely rather heavily on a priori estimates. We conclude that it is desirable not to
overestimate r or a
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Before leaving the subject of autocorrelation noise, let us consider one more question.
It is interesting to determine the cost involved if autocorrelated noise were processed by a
white noise filter (rf = 0). With this information in hand, we also want to consider the
relative performance of the effective white noise. suggested by D'Appolito (1971 ). DAppolito
says that an equivalent white noise of variance

"will produce the same estimation error as the original first order Markov process of variance
02. Notice the factor multiplying o2 is always greater thn one.- In Figure 6.4. 0 is again
plotted for the case of rf = 0 (whitc noise fifter) when the actual noise has correlation time
r. We find that. if the measurement error standard derivation assumed by the white noise

filter of is cqual to the nom-inal value a. the performance drops off rather sharply when r is
greater than At (i 16 second here). Unfortunately. this analysis also indicates that the
effective white noise (of = off) performs no better and. in fact. considerably worse as the

1.0

0.8

0.6

6 0.4 - O =

Uf

02 a %f

0 0. 1 02 0.3 0.4 05

t
Figure 6.4. Performance of Wb:te Noise Filter with Various Values of o
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correlation time gtows. Since increasing the nominal measurement error does not help. as
an experimtent the variance of the white noise driving term for the first-order Markov process
was tried. We see frcm Equation (6.9). that ow is less than the nominal value o. This value
(of = v, ) produces about the same results as for of = a. We conclude, therefore. that near-
optimal performance (0 = 0.9). for the white noise filter is obtaine,-d only when T < At. For
r> -at. the white noisc filter performance drops rapidly. It does not appear from this
analysis that a white noise filter with an equivalent white noise (other than of = o) will help.

A final decision on the use of this correlated measurement noise algorithm must depend
upon the final selection of a sensor suite chosen for the fire control system.

VII. TECHNIQUES FOR THE REDUCTIOU OF COMPUTATIONAL BURDEN

Several aspects of the filter developed to this point, such as a desire for a high data
rate and r.al-time covarianee propagation. begin to impose a significant computational burden
on a small digital computer that might be utilized in a fire control system. Further develop-
ment of the threc-dimensional filter (in Section IX) and the addition of the dual-bandwidth
adaptive features (in Section V) srve to multiply these computational requirements. Ob-

iausly. anything that can be done to reduce !he calculations required by the basic one-

dimensional filter could be significa-t. in this section. two possibilities are explored.

The high cycline rate of the filter might possibly be offset by data comprvsion or
-prefiltering.' i.e.. procs,,ing data at a higher rate than the filter cycles if this can be dorc
without significantly degrading performance. The real-time propagation of error covariance
on a fixed-point coniputc: of limited word length (say 16 bits) poses other problems. Con-
sidering the potential rjage of the elements of the error covariance matrix. which involves

the squares of both rather large and rather small numbers during one run. it was found that
such a computer would have to perform the covariance calculations in double precision in
order to allow sufficient scaling. There is ako the possibility of the loss of the positive
definite property. required for the -error covaiiance. due -o numerical error that results from
finite word length ca'culations. Such a condition is disastrous as it usually leads to in-
stability and ultimately total failure of the filter. The possibility of this occurring for our
case is r-ther remote. however, since process noise is always added which tends to place a

well-defined lower bound on the steady -state error covariance. These problems can he

eliminated through the introduction of an error covariance square root which can be propa-
gated in pl. -e of the covariance. There arc ao other possibilitks for determining P. such as

the inforrnatit ' matrix (the ii.. erse of error covariance) or its square root. but these will
not be cxpiorer: -i this report.

Another ver- i,,.ortant possibility, currently under investigation and not included in
this report is the rN. -- hility of using functional approximations for the error covariance
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m,:,--x. Such functions would be computed in the laboratory prior to implementationi andwould be functions of time as well as all the parameters (i.e., At. u, uN. and rM ). The ap-proach presently being studied would work as follows. The error covariance matrix ;scalcalated (via the Kalman filter equations) as a function of time and over a range of allthe parameter space and stored on the computer. The steady-state solution is first fit usingleast squares over the parameter range. (Work is also under way to c.olv. exactly the steady-state nonlinear matrix Ricotti equation for P but a solution has not yet been obtained.)Then, knowing the steady-state solution and the initial conditions, the transient phase isfit as a function of time. The resulting functions are then used to calculate the gain matrixin the usuai fashion. A sensitivity analysis is performed in order to assure an accurate ap-proximation for the optimal gain. If this work is a success, most of the computationalburden of the real-time Kalman filter-which is due to the error covariance equations- canbe eliminated. The author is quite optimistic as to the future of this method and its appli-
,tion to the GFCS filtering problem.

A. PREFILTERS

Prefiltering, as the term will be defined i. t:is report, means the processing of datawhich is available at a rate 1i'gher than that at which we wish to cycle the Kalman filter. Iti. also commonly referred to as data compressia,: Surpose. as shown in Figure 7. 1, that theKalman filter is cycled once every At seconds but that we wish to process data at an integerrate p times the f6lter cycling rate. We will therefore have p measurements, equally spacedAt/y apart, that will hae been made since the last filter cycle at time t(k - I ) and which we
want to process at time t(k). There are undoubtedly several possible methods of aggregating(or lump.ag) or otherwise smoothing these additional measurements. However. iv; wil; con-sider (for now at least) the sirplest effective method of doing this. namely, aver, ging.

As Warren (1974) points out. for short time intervals where the measurement noiseessentially masks any timL variation in the signal, data averaging is an effective means of datacompression with small loss of information. Actually, we are not quite (but almost) in theregion of applicability of this finding. For example, if we want to compress measurementsfrom 16 to 4 Hertz. there is acttiahy some "locity information that could be extracted fromthe measurements. The variance of thik velocity estimate, however, is so large. relative to!!bat already available in the Kalman filter, that its inclusion wakes essentially Po improve-mcnt. There is. however, a significant increase in the computation required to ;:jwess sucha velocity "measarement.' Wc will therefore compute an equivalent prefiltereu measure-ment based upon a technique similar to data averaging-residual averaging. By averaging thea priori residual as opposed to the measurements we account for the (estimated) target
motion ove.- the prefilter interval.
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Measurements available every At/L

1u4 MEASUREMENTS

i=1 i=2 At. Il/L

TIME

t~kI)t(k) t(k+ 1)

t (k -I+ i/bL)

Kalm~an filter cycles every At

Fihure 7. 1. Prefilters- Reiation of Measurement and Filtering Timing

The averaged (or prefiltered' residual is simply

vpf~k'ft v(k - I + U/p1k - 01).1

All notation in this section on prefilters will be referepced to the filter cycling rate so that
times will be in fractions OiP) of the time between filter cycles. At. Substituting the defini-
tionl for the a prit-rt residual. we find

Ppr(ktk - I) I., k - I + Up) - ik1 (k - I + i/plk - I)

(7.2)

7f i= k,(k - I + i/pilk I)

Where

P( z (k- I + ilp) (7.3)

?4



is the average measurement. It is convenient to express the estimates x, at times (/1) At
relative to the extrapolated value at time tk. This is done using the transition matrix and
can easily be found to be

i, (k-I +i/pIlk- 1)=  k/k-1)+ I- At k2 (kk- 1)

(7.4)
+ i i3 ( k / k - 1)

where

= x(7t )At] = r2 P, -- )AT..~ (7.5)

Substituting Equation (7.4) into (7.2) and taking the indicated sums, we find

pfk/k -) z(k) - I(k/k- I) + I- - I

3 (k/k- (7.6)

We therefore denine the effective prefliltered neasuremenlt as

zpr(k) 7(k) + P2 x2 (k/k- 1) P3 3 k/k- I) (77)

where

P2= tI- (78)

ayid

2,, - MP2 (7.9)

re constants computed once before implemeatation. Therefore

PPf(k/k- I) - pr(k) - iI(k/k- 1) (7.i0)
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We note that if IA= 1. then P2 and u3 vanish and zpf(k) becomes z(k) as before.

Let us now consider the effect of pretiltering on the measurement error statistics. From
Equation (7.7). it is obvious that. strictly speaking. an error in Zpf is a function of the errors
eg(kik - I) and e3 (k/k - I) as well as the measurement errors. IHowever, consideration of
the small values of 2 and 43 reveal these effects to usually be negligible. Under this assump-
tion. we ind that the preliltered measurement error is simply the average of the individual
measurement errors. that is

Vpf(k) v(k- I + /P) (7.11)

The standard deviation of the prefiltered measurement error is (assuming the measurement
error standard deviation constant)

por(k) = r lvp,(kl

{ ] (7.12)

rhc term in the brackets is ihe average autocovariance of all the measurement error pairs.
lach of these can be expressed in terms of the nominal autocorrelation coefficient for lag
At as

Ri = L IVi k- I + ip) VIk - I +jiaI)I

= o2(k)i e-p I- lt(i - tj)IiTj
(7.13i

= 2tIkexp Ii- i At]

= o2 (k)p(k) , J -

Suhb titutilg into Equation (7.12). we find

fok!/!2 (,k) P pik)'--s" (7.14)

i76 I
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Notice that, if p(k) equals zero (white noise), and noting that 00 is unity. of(k)/o 2 (k) is
the familiar I/p. A similar expression can be written for the autocorrelation of the \Vpr(k) s
which is

Rpf(k. k 1) = E [Vpr(k) Vpf(k - I)1 (7,15)

Using Equation (7.13). we find

- =- p(k):i - + M;hI (7.16;

In this case. if p(k) is zero. Rpf(k) is zero. Therefore, if the original measurement errors are
uncorrelated. the prefiltered measurement errors will also be uncorrelated. Also. if p = 1.
we recover ,(k)= ok) = u2(k) and Rp(k. k - 1) = (k)p(k).

The correlation coefficient for the prefiltered measurement errors is

Pf(K) = Rr(k. k I)!opf.k) (7.17)

and the etlctive prefiltered measurement correlation time constant 'an he calculated, if
desired, as

"rat(k) = At/n I1.Ppf (k)l (7.18)

In Figure 7.2. (he ratios of ur /a and rpf/r are plotted as a function of p (as though p
were a continuous variable). Since of/O and Tm!?_7 are functions only of p and the nominal
correlation coefficien, p. several values of" were chosen to specify p. The nominal data
rate is k = 16 Hertz so that the filter cycling time for each value of p on the graphs is At =
p/k. We find that the ratio o r/o is always < I for p > I. an~d the measurement eiror reduc-
tion is greatest for the white noise case. The ratio of -rpf-r is > I and increases, on tht: other
hand. as p increases. The ratio decreases as r increases, however.

Let us now consider the effect of prefiltcring on filter performance. We find there are
three factors whose interaction we must consider. The increase in the time increment be-
tween filter cycles (a reduction of the filter cycle rate) and the increase in the autocorrela-
tion of the prefiltered error both tend to increpse covariance and thus degrade performance.
Fortanately. however. the decrease iii the prefiltesed measurement error variance tends to
decrease the error covariance and improve filter performance. The net effect on filter per-
formance was found to be essentially negligible with less than 2 percent variation in op(t +
10it) whin r ranges from 0 to 0.5 seconds and p vaiies from I to 10. It has therefore been
concluded that this method of prefiltering, based upon residual averaging, offers us a

77

I



2.4

'1.0~~~ 16 Hertzz ~.ise
0.9 

2.?-0.

0. -052.0 .2

b 0.7 -1. )a

b 1.6
C 0.5 -. *~ 0.5

0.4 1.0

101 2 3 4 5 6 1 a 9 10

a. Prefiltered Error Standard Deviation b. Prefiltered Error Correlation Time

Ratic Ratio

Figure 7.2

computationally inexpensive way to achieve high-data-rite iltering with negligible sacrifice
in performance relative to high-data-rate full-Kalman filtering.

A simall problem was encountered from the use of this method of prefiltering which
will noiw be discusscd along with the solution. As mentioned previously. the residual aver-
aging v.:chnique of prefiltering causes tOe actual effective measurement error statistics to be
a function of the estimation error. as can be observed in Equation (7.7). It was previously
assumed [Lat this portion of the prefiltered measurement error was negligible as far as the
calculation of the effective prefilter statistics is concerned. This assumption is valid except
during the initial covergence period when the estimation error covariance is quite large.
Upon comparing the calculated covariance with the a.-tual (simulated) Monte Carlo error. it
was discovered that. during the initial covergence interval, the actual errors consistently
exceeded the calculated error standard de vjation but that the effect disappeared after a
couple of seconds. The author refers to the phenomenon as -prefilter lag." which can be ex-
plained by considering Figure 7.3. During the initial convergence period. the expected
value of the residual,. evaluated at the times of actua: measurement. as shown by the circles.
can significantly increase over the prefiltering interval At. The lag problem ovcurs because
anl average of these residuals does not have the expected error leil(variance) that the filter
calculates. The standard deviation of the actual residual averag, is always less than the value
which the filter expel.ts. o,.(kik - I)Y

After tryinlg several methods to rectify this situation, the author finally found a tech-
nique whereby the prefiltered residual would be -scaled up" so that its variance would

78



o0 Value Calculated by Error
Covariance Extrapolation

-- Linear Approximation

Xi 0

* if

o-f o(k k- 1)

~'0

o-,(k-lI k-I1)

i1l i=,=2

t~k-l)t(k)

Time

Figure 7.3. Conceptual Diagram of the 'Prefihter I ag" Problem
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match that calculated by the filter. This was done as follows. First it was noticed that the
variation of o. over the interval At is approximately linear (since velocity estimation error
dominates) so that we can write o.. evaluated at the measurement points i as

o,(i) = 41- i/p)oa(k- !/k- I) + (i)o,(k/k- I) (7.19)

The average v.'-,e of o,(i) occurs at the point i = (1p - 1)/2 or

o,,AVG 1k) = ( ,.(k - - 1) + , --o,(k/k - I1 (7.20)

inally. the factor by which we want to %cale the prefiltered residual is o,1 kWk - I A,, (;(k)

lrf .(k) 0r +r.tk] + -
!I  7.211

L [ J

where.

r, k) = a,(k -IN I ):o. lkik - I 1 (7.22)

is the ratio of residual level, across the interval. Clearly. if there i% no prefiltering (p = I ) or
if the filter is in steady-.tale operation (r I ). tl:i factor i% one and does not influence
performance. It was observed. however, that this prefiltered residual scaling eliminated the

prefi-ter I---- entirely and was an economical -fix- to implement.

Concerning future work in lite area of prefiltering. the author believcs that an even
greater amount of data compression can be achieced by using simple data processing tech-
niques such as least sqiuarc s. The author, as stated previously, feels that target motion is
highly band-limited in that the tipper limit of frequency is f3irly disLernible from aero-
dynamic limitations of aircraft and missiles. Consideration of the Shannon sampling
theorem, with the usual factor of ten put in to account for noisy duita. tells us that it is
necessary to cycle our target motion estimator at only 2 to 1 Ilert.z. Actually. cycling at
I Hertz is marginal, according to Shannon. but we are probably not interested in Ior capable
of) actually recovering all t.e very highest frequency target motion but merely want to track
through it without diverging. Also. very-high-frequency target .:. celeration usually re.uits
in very small actual displacement that ttnds to be unobservable as it i% down in the mcas-
urement noise. A simple. tonstant-velocity least-sq.uares fit over, say. a compression interval
of I second and a data rate of perhaps 32 Hertz appears v,'r:, attractive at this time and

should be performance-tested as soon as possible.
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B. COVARIANCE SQUARE ROOT

The covariance square root method always insures a symmetric positive definite error
covariance matrix. More significantly. tht- square root formulation can propagate the error
covariance in single precision as accurately as the conventional error covariance methods
do in double precision. Basically. this technique propagates a matrix S, instead of P. where
S is defined by the relation

P(k/j) = S(k/j) ST(k/j) (7.23)

This definition of S is not unique. however. For example. in our situation. P is a (3 X 3)
symmetrix matrix specified by 6 variables. Since S is also a (3 X 3) matrix, for which 9
variables "re rcquired for specification, we find ourselves with three extra degrees of freedom
in S which might be used advantageously. We have chosen, for reasons to be made clear
shortly, to complete the definition by requiring S to be upper-triangular. As we shall find.
the definition of S as upper-triangular does not insure that S will remain in this form when
propagated through the filter equations. The upper-triangular definition of S requires

P,(k/j) = S2lfk/j) + S21 (k'j) + S23 (k'j) (7.24a)

P, 2(kij) = S,2(k/j)S 22 )k/j) + S13(k/j)S' 3 (kj) (7.24b)

Pj3 ik/jp = S13(kj)S.13(k/j) (7 .24c)

P2 (k/j) = S2,fk/j)Sj 3tk/j) 7.24d)

P2 3(k/j) = S23(k/j) 5 33(k/j) 17.24c)

P) 3(k/j) = S23(k/j) (7.24f)

The inverse relations are

Si3 (k!j) = VP (k/j) (7 .25a)

S23(k/j) = P23(k/j)iS 33(k/j) (7.25b)

S2 2(k/j) = VP2z(klj) - S23 (k/j) (725c)

S13(k/j) = P13(k/j)S 33(klj) (7.25d)
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S12(kij) IP12(k~j) - S13(k/j)S 23 (k/j)I/S 22(k/j) (7-25e)

SII(kj) = ./P,(k/) - S+2 (k/j) - S23 (k/j) (7.251)

Now let us consider the filter covariance equations as given in Table 6.2. The error co-
variance extrapolation equation can be written as

P(k/k- I) = P'(k/k- I) + Q(k- I) (7.26)

where

P'(k/k- I) = 0(k.k- I)P(k- I/k- l)#T(k.k- I) 7-17)

It is easily seen that the extrapolation to P'(k/k - 1) can be equivalently accomphshed by
the square root as

S'kk- I =#k.k- l)S(k- Ik- I) (7.28)

Applying the transition matrix for our case. we find that. if S(k - Ilk - I ) is upper-
triangular, then S'fk/k - I is also upper-triangular with tL following values.

S1 I 1kik - I) SI ,(k - Ik- I) 17.29a)

S 2(k/k- 1) = S12(k- I/k- 1) + AtS 2 2(k- Ilk- 1) (7.29b)

St3 klk, - I = Sti(k- I/k- 1) + AtS23(k - Ik- I)
(7.29c)

+ aS33(k- Ilk- I)

S,,(k/k- 1) = S2,k- I/k- 1) (7.29d)

S",(k/k- I) = S-3(k- I/k- I) + PS 3(k- I/k-- D (7.29e)

S 3(k/k- V) = YS33 lk- I/k- 1) (7.296l

If process noise. Q. is present. the addition of this term poses a more difficult probem.n
in the square root covariance formulation. There are several possible methods, both exact
and approximate, J0iscussed in the literature. The simplest and usually the fastest of the
exact methods is the sc.talled root-surn-square (RSS) operation discussed by Carlson (1973)
am: )ng others. This technique essentially recalculates the error covanance. using Et;uation
(7.24). adds the process noise and then takes the matrix square root to determine

82



S(k/k- i) = |S'(k/k- l)S'T(k/k - 1) + Qk- I)]I/2 (7.30)

This las! operation. using Equation (7.25). is commonly known as Cholesky decomposition
in triangular form. An alternative exact method is the Householder triangularization algo-
rithm. discussed by Kaminski. Bryson and Schmidt ( 1971 ) which maintains double preci-
sion accuracy but with higher computational cost. Schmidt (1970) also discusses-but does
not recommend- a technique which requires two matrix inversions and results in a loss of
the upper triangular form. In addition to considering these exact algorithms, the author
also found the technique of Wu (1973) very interesting. Wu assumd a square root addi-

live process noise of a form

S(k/k- I) = S'(k/k- I) + q'(k-- 1) (7.31)

where we might think of q'(k - I) as equivalent in some sense to Q" 2 (k - I). Equation
(7.31 ) is admittedly not equivalent to the original extrapolation. Equation (7.26). since two
additional terms appear in the error covariance. That is

P(k/k- I) = S'(k/k- I)S'T(k/k - I) + q'(k- l)q'T(k - I)
(7.32)

+ S(kik- l)q'T(k - I) + q'(k- l)Sq'(k,- I)

Wu's principal argument for this assumption is that the process noise itself (0) is
rarely known exactly in the first place, being "basically empirically determined data.- The
method is also no different. in principle. from the epsilon technique in which a somewhat
arbitrary process noise is added to prevent divergence. Since divergence prevention and
control of the filter bandwidth are the primary uses of process noise in our application.
this argument does not seem unreasonable. The main difficulty in Wu's method is in appli-
cation. It is very difficult to control the amount of process noise which we would like to
add. Notice that the last two terms involve S' so that the amount of process noise actually
added is a function of the current error covariance. These two terms are definitely not
negligible since each is usually larger than the q' q' term. The reason for this is that S' is
usually much larger than q'. The author found that. by trial and error. it is possible to find
a q' (much less than Q1iy) that produces essentially the same steady-state error covariance

.s the covariance filter for a given situation. Unfortuna:ely. no relation can be found be-
tween q' and Q waiich we might use to maintain adequate control over the filter bandwidth.
Wu's method was therefore abandoned in favor of an exact method.

it was therefore decided to use the RSS techniqve which is the most efficient of the
exact methods. The equations for adding process noise arc then (letting W = S(k/k - I) for
notational convenience)
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W33 = I (7.33a)

W23 = (S23 S 3 + Q2 3)/W33  (7.33b)

= + s;_2 Q-22 - Wb (7.330

W1 = (S'13 S 3 + Q1 3 )/W33  t7.33d)

W, 2 = (S12 S'2 + S1 3 S' 3 + Q,2 - W1 3 W23/W2 2  ( 7 .33e

Wit = /S 1S + S°I' + QI - W12 - W3.

Actually. it might appear-at least it did to the author-that the requirement to calculate
the covariance in the RSS method would undermine the expressed desire to retain double-
precision accuracy. The accuracy is not lost. nowever. since in the type of fixed-point
computer in which this is implemented. a double-length word results automatically when-
ever two single length words are multiplied and a double length word must be used in order

to obtain a single-length word from the square root. The net result is that. while double
length words appear in the intermediate calculations, all the calculations are really in single

precision and very efficient.

Let us now consider the update equation. The original technique for measurement
update of the white noise filter was developed by Potter (1963) for the case of scalar meas-
urements. Unfortunately. the Potter technique is not applicable to the form of the co-

variance update for the correlated measurement noise filter. The Potter form also results in

a loss of triangularity even for the white noise case. We will therefore again utilize the RSS
method suggested by Carlson in order to maintain double-precision accuracy. The co-
variance update equation. repeated from Table 6.2. is

P(k/k) = W WT - K*(kjG(k) K*Tk

Applying the modified RSS technique to our equations. we find (again letting S S(kik) for

convenience)

S33 /'W 3 - GK 2  (7.34a)

$.3 = (W2 3 W3  G K* K*)/S 3 3  (7.34b)

S2 2 = + W'3 - G K' - S2 3  (7.34c
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S1 3 = (WI 3 W33 - G K* K*)/S 3 3  (7.34d)

S.2 = (W 12 W22 + W 13 W, 3 - GK*' K* S 1 3 S23)/S22 (7.34)

S =/W2 1 + W2, + W2- GK 2 - S2, - $23 (7.34f

Equations (7.33) and (7.34) will now replace the covariance equations (8) through (13) and
(22) through (27) of Table 6.3. The gains are calculated in the same manner except that
Equation (7.24) must be used to calculate the required covariances. The expressions for
the A's are somewhat simpler in square root form, i.e.,

A,(k) = p(k) [S1-2k/k- I) + S', 2 (k/k- l)S 1 2 (k- I/k- i)
(7.35a)

+ S' 3 (k/k- I)S 13 (k- 1/k- 1)1

A2 (k) = p(k) 1S12(k- I/k- 1)S,(k/k- i) + S 13 (k- I/k- 1)S2 3(k/k- 1)1
(7.35b)

A3 (k) = p(k) S13(k- I/k- l)S;3(k/k- i) (7.35c)

Initialization of the square root covariance is accomplished by another ,,SS, similar to
Equation (7.25).

In summary, we have found it is possible to reduce the computational burden by a
factor of p by prefiltering without loss of performance. Typically. we might choose/a = 4
and thereby process data at a rate of 16 Hertz but only cycle the filter at 4 Hertz. By using
the square-root covariance filter, it was possible to eliminate double-precision covariance
calculation, thereby significantly reducing the time required for covariance computation.
In fact, a comparison was performed for the Navy standard mini-computer, the 16-bit
A/N UYK 20, to estimate the difference between the error covariance equations imple-
mented in double precision and the square-root covariance equations in single precision.
The difference was more dramatic than anticipated as the square-root covariance resulted
in a reduction of computer time by a factor of 4.56! This will translate into an overall filter
computation reduction of a factor slightly less than four-since the filter obviously does
other things besides covariance calculations. The combination of both these techniques
reduced the required filter computation time by a factor of 12 to 16 over the high-data-rate
covariance filter. We find that these reductions are well advised since the dual-bandwidth
adaptive filter introduces an increase factor of two and the three-dimensional filter (Section
IX) an increase factor of three. That is, we will be (approximately) able to run a three-
dimensional, double adaptive filter with prefiltering and square root covariance in one half
the time of single one-dimensional error-covariance filter without prefiltering.
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Vill. "'lEDCIMOW

This sedjt"on concerns itself with th~ Z-' ton of the prediction of future targ-el posi-
tion based o- current estimates of position --.rc rates. We will, for the moment. divorce
aurscives from the target models utilized kni _4C filter and reconsider models fol the long-
time prediction problem (i.e.. tp = 5 to 30~ns.We will think of the filter only as a

'blck-ox'algorithm which provides as euiputs estimates of current position, velocity.
acceleration, and associated error covarianct. This information will ses-ve as input to the
predictor. The question is how the predictor can best use this information. The predictor.
of course, is the critical factor in a ;unfire control system in that the calculated future target
position is the aim point for the gun.

The conventional method of prediction is to simply extrapolate the assumed dynamics
model used in the filter itself. For example. a second-order derivative polynomial filter
(with appropriate divergence prevention modifications) that provides estimates of the
(possibly varying) acceleration would predict the position at time L,, in the future 3S

X(t + tit j*,(t~tl + i 2(III)tit + i 3 (t~t) t2(81

where i 010l is the current state vector estimate. It his been suggested by some people that
perhaps the estimated acceleration should not be used in the prediction even though such
an estiMa tC might be available from the filter- This argument is based on the indisputable
contention that orer cannot expect a target to mpaintain a constant acceleration over lon
prediction time titervals. Obviously if the acceleration is ignored in the predictor. we simply
predict tanrgent to the curve and have the constant velocity predictor.

i~t+ 1t, it) = i I (tit) + i2 (tilt) t, 82

This predictor is currently more prevalent in operational gunfire control systems.

This techniquec. of course. ossntially surrenders any hope of. at least partially. dealing
with an accelerating target. One is therefore faced with a choice of predictors. and it must
tbe conceded at this point that, in the general case. one has no way of knowing what the
target will do in the future- It might very well follow either Equation (8.1 )oi.2_ortmore
likely) neither. The prediction time is an important consideration here. For -short p.-diction
times (say 1 to 2 seconds). it does not make a great dea! of difference since very few targets
can maneuver at a level to seriously alter their course in such a short time. For longer pre-
diction times (say 2 to 20 seconds). typifying the possible air target projectile flight times
observed in large caliber gun systems. it is well known that an air target can alter its course

*ths wcion resuiid from tliscv i of the atbor Wnh Dr. Ckaeks!. Cobes aW Mr. Tom Aks.JAM o NSUC wo ahM

the iuthot is um&bir fix uiatasr
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considerably. Indeed. it is the author's contention that. in an engagement, one should ex-
pect the target not to maintain a constant velocity or acceleration over such durations.

The above reasoning led rather naturally to a consideration of methods of somehow
weighting the acceleration in the prediction equation. The weighting parameters required
could conceivably be estimated by considering the types of target trajectories in a system
scenario to determine parametric values that could improve prediction accuracy. One ap-
proach to this problem can be effected if we again consider the target's acceleration to be
modeled as an exponentially autocorrelated random variable (as in Section IV) and therefore
of a nondeterministic nature. Such a model would conceivably contain any target maneuver.
be it the exercise of deterministic strategies, evasive maneuvers, acceleration perturbations
due to winds and turbulence. etc.. as simply a sample trajectory as long as the trajectory
acceleration profile can reasonably be described by the chosen statistics.

Let us first consider the prediction transition matrix. If we again assume that the
actual state obeys the relation

x(t + tr.) = 4(tp) x(t) + w(t + tP. t) (8.3)

then. if we are given an estimate i (t). the expected value of i (t + tr ) is simply

i(t + tP/t) = 4b(tP)(t/t) (8.4)

since w is a zero mean random variable. Notice that we have used additional notation on w
to indicate that it is integrated over tP. It is quite easy to confirm thai the transition matrix
also yields the minimum variance linear prediction. Suppose we assume some transition
matrix (say A) which we want to determine so as to yield the minimum prediction error
variance. i.e.. we assume

_(t+tp/t) = A(tp).(t/t) (8.5)

he prediction error is then

fit + tit) k it + tpt) -x(t +tp)

(8.6)
= A(tp) t/t) - 4x(t) - w(t +tp. )

and the prediction error covariance is

87

I.



P(t + tplt) = E e(t + tplt) e T (t + tpIt)

= [A(tp) - ,I(tp)] SIM)[A(tp) - 4)(tp)] T  (8.7)

+ A(tp)P(tilt)A T (tp) + Q(tP)

The matrix S2(0) is the covariance of x where

S(T)= E x(t) xT (t + T)

is the autocovariance of x which can be related to the transition and process noise matrices
by taking moments of Equation (8.3). i.e.,

V(0) - t(t)-fl(OT(t) Q(t P) (8.8)

and

Wtr) = 4ltp)f2tO) (8.9)

Using the techniques described in (;elb ( 1974). we construct the cost function

J = E [6T(t + tPit) S (t + tp/t)] (8.10)

where S is any positive semidefinite matrix. Choosing S = 1. we find

J = trace IP(t + tit)l (8.11)

It is a relatively simple exercise to confirm that the necessary and sufficient condition to
minimize J is to choose

A(tp) * (tp) (8.12)

We find. therefore. that the minimum variance predictor is also given by the transition
matrix. The position prediction equation is then

•X (t + tpit) = i1 (tit) + X2 (tit) tp

+ .R3(t/t)r2 lexp(- tpip) + tpITp - 18

which is the double integral of the prediction a, zeleration

i3(t + tp/t) i3 (tit)ex (- tpPrp) (8.14)
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Notice that we have introduced another parameter, t,. which is the acceleration time con-
stant we want to use for prediction. This value does net necessarily correspond to any pre-
vious parameters since, as mentioned in previous sections, the filter does not assume any
particular value of ihe maneuver frequency but instead assumes an upper and lower bound
of a range of values. The zithor. at one time, attm., t-:d to d'etermine a value of rt on line
(i.e.. during real-time execution) or adaptively, but to e.ate no satisfactory technique has
been found. It still appears feasible, however, to estimate an appropriate value of rp based
upon the state of convergence of the adaptive filter anti additional work in this area might
be productive.

In the absence of such a technique, however, it appeared more promising to use an
expected value

7P = E Irm i (8.15)

where the expectation is taken over the target scenario. At this time. a value of rp = 5
seconds appears most reasonable to the author. It should be noted that the actual value o,*
the predictor is rather sensitive to the choice of Tp. as can be seen in Figure 8. 1. The ac-
celeration at t = 15 seconds is assumed to be known as 4 yards/second 2 . By choosing dif-
ferent values of 7p (from zero to infinity), we find that the actual predicted position (say
for t, = 15 seconds) varies by several hundred yards. If rp is zero. we essentially Zre using
constant-velocity prediction. and conversely, if Tp becomes very large (or frequency ap-
proachkcs zero). we predict a constant acceleration path. For vwlues in between zero and
infinity, the predicted acceleration decays exponentially. and th 'ath eventually approaches

a constant velocity--but not the same path as if rp = 0. Notice th3t the exponential accelera-
tion equation always predicts a path somewhere between constant velocity and constant
accelerction and can never cross these bounds.

A study conducted by the author. Clark (1973). compared the three predictors
(Equations 8.1. 8.2, and 8.13) discussed in this section. The results indicated that. while
for any given trajectory. either constant velocity or constant acceleration might be the
best. the exponential acceleration predictor was consistently the ove,.-' best (considering
root-sum-square prediction error). This result should be expected since the exponential
acceleration matches the acceleration autocovariance of the scenario much better than tl.e
other two predictors.

Before continuing the filter development, it is interesting-and very disheartening to
consider rcAistically the type of prediction error likely to be experienced by a gunfire
control system against a "randomly" maneuvering target under conditions of perfect filter-
ing (where we assume the current filter error covariance vanishes). The standard deviation
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Figure 8.1. Random Acceleration (Exponential) Prediction; Examples
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of the predicted position error is due only to extrapolated process noise. That is

oI(t + tpit) =OF V (8.16)

where Q, Ip is calculated from Equation (4.16). In Figure 8.2. this quantity is plotted as a
function of prediction time t for a low. medium. and high set of the parameters am and( vr. These results are consistent witm those obtained hy simulation against targets w.h the
same maneuvering characteristics. When we consider these vah.,s is IFi of the C: F.tive

rdii of lethality of various projectile/target combinations, we must t. ncude t!L1t *.ie -
fectivencss of such gun systems (using unguided projectiles) at long ranges is certainly

questionable. In fact, this unfortunate situation is the primary factor limiting the effective-
ness of current conventional gunfire control systems.

The eventual deployment of a terminally guided projectile with significantly larger
acquisition "baskets" promises a corresponding increase in the effectiveness of gun systems
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against maneuvering targets. The random acceleration model, as developed in this paper, is
not intended to be a "solution" to the gunfire control prediction problem. It is really only
a more realistic approach to the problem. as opposed to the derivative polynomial models,
and it is felt an improvement. The author and his associates are currently investigating new
prediction techniques that hold the promise of significantly improved prediction accuracies
for particular targets. A report on these techniques is expected to be published in the near
future.

IX. THREE-DIMENSIONAL CARTESIAN FILTERING

All discussion to this point on filtering and prediction have dealt with one-dimensional
estimation of target motion. The rationale for this approach was to maintain a level of
simplicity in the presentation as long as possible. Obviously. the multidimensional aspects
of the problem actually had to be considered at all times during the development. In this
section. we will concentrate our atten!ion on this subject.

Several factors relating to the application mtit be considered in selecting a coordinate
system for filteri:g and prediction. Primary consideration must be given to accuracy. since
this is a iire control problem. and computational simplicity, since the algorithm must be
implemented within the constraints of a given computer. The sensitivity to various non-
linear effects. we shall find. drives the selection based upon these f4ctors. Special types of
measurements (such as Doppler range rate) or the existence of multiple rates t.etween the
polar measurements would influ ,nce this decision but are not present for this application.
A factor which is important in this instance is the reference coordinate system required for
actual filter input and predictor output. The requirement for stabilized (pitch and roll
corrected) measuren:ents with a common reference point on output can be effected with
fewer and simpier ti-ansfonnalions in the Cartesian frame, but this factor is not of primary
interest. The first two factors. accuracy and computatioral burden, were therefore the
driving forces for this study and will therefore b- considered in depth in this section.

Thc study presented in this section is based on two premises:

I ) Measurements of target position ai: obtained in sjberical polar coordinates. i.e..
slant range (RI. bearing angle from north (B) and elevation angle Or-). It is assumed that, as
designer of a filieripredictor for a given fire control system. we have avaifbh "'reasonably
good" estimates of the quality of these measurements. i.e.. measurement error variances
and correlations in the original (polar) measu'ement frame. It is also assumed that the de-
signer krows the ova.lability of this data such as the range of possible data rates, the volu-
metric coverage of the sensor, any spatial variation of the measuremen; error statistics (due
to such effects as multipath). and estimates of any target induced errors such as glint and
scintillation.
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The polar-Cartesian transformation e4uations are:

x r si cos E1

x = Ly r cos Pcos E I= ,' (J
LzJ Lr sin E

where x is east. y is north and z is vertical. The corresponding inverse relation is:

r Vx 2 +T -Tz 2

{P=BJ rc tan (x/y-) AQX 92

_E- Larc sin (zlr)

(2) The target isasumed to be modeled "best" in Cartesian coordinates. By this. we
mean that the target is more closely linear and well behaved in Cartesian ,oardinates than
in polar coordinates. For example. let us consider simple linear target motion which is
canonical in Cartesian coordinates.

dx/dt = v. = Constant (9.3a)

dy/dt = vy = Constan; (9.3b)

z = 0 = Constant (9 .3c)

Using Equation (9.2). we find that second (and all higher) derivatives appear in the
polar frame as

d2 r/dt 2 = r (dB/dt)2  (9.4a)

d2 B/dt2 = - 2 (dB/dtXdrldt)ir (9.4h)

dB/dt = (x -v - y - vy)lr2 (9.4c)

The au;hor refers to these second derivatives as "apparent accelerations" and they a,
described in the literature, such as Monzingo (1972) who calls them "psuedo-maneuvers"
and Cantrell (19 73). These accelerations, if viewed in the polar frame, must either be
modeled and propagated nonlinearly by the filter/predictor or. even worse. tracked adap-
tively. Notice also, in Equation (9.4). that any crossing component can produce very high
angular rates if r becomes small. There arc. of coure. corresponding polar canonical targets
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such as motion along a ray or circular motion centered at the origin. Examination of the
target . enario indicates, however, that such motion would be encotatered much less fre-
quently than the nominal Cartesian motion.

Perhaps the -best" target coordinate system of all would be one translating with the
target and orknted appropriately along the (changing) velocity vector and two normal ac-
celeration d.rections. Such a coordinate system would be very cambersome to implement.
however, and would not change the fact that a basic nonlinearity exists between the meas-
urement frame and the target motion frame. We will therefore assume that the Cartesian
random acceleration target model, where the maneuver level and frequency lie within the
previously described bounds. represents the true target and proceed on that basis. To form
the Cartesian target model, an additional assumption of independence of target maneuver
between channls was made. "that is. we define the three.dimensional Cartesian siate vector

X3D. ix y.z'r (95)

where x. I. and z are each one-diimensional thre-element state vectors (position. velocity, and
acceleration) governed by the radom accekrati-_:n model of Section IV. TLe transition
matrix is then

0 0

0 0 (9.6)

where 0 i, defined by Equation 44.8) and the process noise is

QOcD( [-- Q 01'.7?
L 0 0

where 0 is given by Equat;on 4. L3). The assumption of maneuver coordinate indepedcn
i% weak but depends up..,, the part; ;M!ar type of target and its particular angu.ar orieitati-mi
in the coordinate system, The problem can probably be resolved by modeling the taIlez in
tie moving target fr~me (mentioned previously) or by cross-correlation studies. Clearly.
the target motion analysis problem is one that requires much additiof;'l attention.

Starting with premises ( i ) and (2). it becomes immediately obviots that there ar a
startlin[c number of different filtcr configu-ations, both optimal and subo.:!mal. that one

94

044

/ 4.



can construct. Primary classificazion of thu.se configurations will be by coordinate system of
the state vector. We then considered three classes: (A) Cartesian: (B) spherical polar: and
(C) hybrid (a combination of both). The details will be presented here only for the Cartesian
portion of the study since a suboptimal version of this class was ultimately chosen. The
performance criterion was again chosen to be the average (integrated) predicted position
optimality ratio

i k=-" 03D Ortim a-ittk +  tptk)
0(ti.T) = -L 2: ) (9.8)

i -k 03D Actusa(tk + tptk)

where o3D is the root-sum-square of the three predicted position error coordinate values.

Based on the premises of this study. we will now proceed to form filter configurations and
test the performance of each.

A. OPTIMAL NONLINEAR FILTER

Given the Cartesian target model which is obviously linear in the Cartesian frame. the
use of polar measurements implies that the measurement update step will contain the non-
linearity. Now we will model this nonlinear measurement and construct an optimal non-
linear filter. The three-dimensional polar measurement is

= (r B El' + v.

%/!+ y! + ,-

are4anix/y) + v. vS v ITl (9.9)

Ljrc sin (xir) j

with measurement error variance

R ° [ 02 o] (9.10)

assuming no cros correlation of polar errors. Equation (9.9) is clearly of the general non-
linear form
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z(k) = h(&) + V(k) (9.11)

which can be treated by using the Iterated extended Kalman filter." The extended Kalman
filter linearizes h(x) aboi the extrapolated estimate and uses the Jacobian to obtain the
filter update. The iterated filter simply repeats the process each time. linearizing about the
most recent estimate. Details of this general technique will not be presented in this report
but can be found in Jazwinski (1970). An important point is that the iterated extended
Kalman filter, if nondivergent. tends to remove those estimation errors which are caused
by systematic and/or observation nonlinearities. By iterating until the changes between
succenssive estimates and covariances become arbitrarily small, one approaches. as closely as
desirable. the optimal estimator for the nonlinear situation. This is the technique utilized
in this study to !,stablish the optimal or standard against which we will compare vrious
admittedly suboptimal filters.

H. (:OU!LEI) LINtjARIZ/IDI: IER

Another approach for three-dimensional Cartesian filtering involves utilizing the
polar,'Cartesian tra-lformation to nonlinearly combine the polar observations to form
Cart-.;iat, measurements. The three-dimensional measurements are given as

x- rsinB cos E

- {=l= rcosBcosE + vc (9.12)

4 r sin E"

with o..rvation tnatri,

fir= 00 1 004O 0 t9.100)

0 00 O 0 0 00

A problem arises Nincc. although we input the exact nonlinear measurement. it is dif-
ficult or imposible to compute the exact nonlinear measurement error variance. !n order to
estimaic R correspondin-q to Equation 09. 12). we resort to linearizing the measurement error.
"The stnsitivity to tie ar~oxmatior error of R should not be hith as we found in the meas-
urement error sensitivi- .-u'e- in Figure 6.3bL To forin this linear approximation, we
first must linearize tih zc..urement error. Differentiating Equation 19.12) and replacing
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the differentials by "deltas" representing the finite observation errors, we find that the
linearized Cartesian errors are equivalent to a simple rotation of the polar errors.

vx-

L - -T vx. X(9.141

where the Jacobian is

"BcE rccE -rsBsE

T(x) -rsBcE - rcBsE (9.15)

L.sE 0

u.ng s and c to represent sin and cosine.

Again assuming to cross correlation of polar errors. the linearized Cartesian mca.ure-
.nnt error Variafce is

&--, = T"(x) R. TF (W) £916

For reference purpo-,. the elements of -L will be written out.

sBZCEI ', + r~cB- 02 + rs02sE 2 al

0; B~f 2  + r2-.82 a2 + r2 cB2sE:2 0j (I3~
rof ~|: o( 9. 17b)

a2 = sF- a!+ rcE2  2 t9.174-

ak= a = sBcB(of 1 - - rC 2  + r2 sE-2 o (9. 1 7d-

o,= , = isi i.4o- rz a oi 9 .l 7e,

OX., = Of :BsF4cE(o- r o'( I.

It should be noted that there is a slight discrepancy between Equations (Q. 16) and (9.1 7).

fiverywhere in Equatton (9.17) that ou appears. there originally was a 2 . L I: as calculated
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from Equation (9.16). The reason the cos2 E was omitted is that the quantity a0 eos2 E

actually is the value that remains constant in the tracking system over the range of elevation
angles from 0 to 90 degrees. Th; angular resolution is r-ally constant in the dish frame.
i.e.. in the polar coordinate system that is aligned with the sensor axis. As one traverses
from zero elevation to 90 degrees. the -closing" of the fixed polar frame at the pole singu-
larity causes a fixed error in dish frame to subtend a greater beating angle. This behavior
goes as the inverse cosine of elevation. All we have done then is to substitute for oz the
Value O&D/cosz E (subscript D sta,:ds for dish): the inverse cosz E cancels with the cos2 E
that appears in each equation with a:. and the subscript D is emitted and Equations (9.17)
are obtained.

While maintaining that the senitivity analysi; provides the ultimate test of the sub-
optimality of a particular filter configuration- it was also felt that the validity of the error
linearization in Equations (9.141 and (9.16) were central to the problem and that further
study of this approximation would shed light on the sensitivity results. With this in mind.
two simple tests related to the linearizatio, approximation were conducted. First. it was
desired to directly test the actual assumption of error linearity. i.e.. Equation (9-14). This
an ca-ily be done by calculating the true nonlinear Cartesian error as

=c _ R fir + i.j, -. (ly, (.8

where the funCIfon xC is gi en by Equation (9. 1). The error due to nonlinearity is then
Simply the diflfcrence

RC !-I YCL - Y(9.19)
I
r' Actua! vahws of I. were then calculated over the range of coondinates of interest for the

GFCS

0vards1 4[50rDya

0 rad 8 r =1 d (9.20)

L ra LE FZ 1]
,and. more importantly, over the range of polar noise

[0 yard;" Ir-0yr5
0rad<vyt [va]<{8 :rad It9.21)

L0 ir L J L8mradJ
98



which exceeds by perhaps an order of magnitude the level of error anticipated with the
actual tracking sensors. For the conditions oi' Equations (9.20) and (9.21). the maximum
difference between the linear error and the nonlinear error never exceeded 1.5 yards. i.e..
In! < 1.5 yards with the maximum occurring at a range of 35000 yards. It was concluded
that. whereas the linearization is used only for the specification of the measurement error

statistics and not for the observations themselves, the effect of this approximation ol sys-
tem performance would be negligible since (as we observed in a previous section) the sensi-
tivity to utilizing the wrong error statistics is minimal. It must also be kept in mind that
we can not really expect to be able to estimate the sensor polar statistics with nearly as
much accuracy in any case.

Another interesting test was conducted to evalate the effect of the nonlinearity on
the transformed ('artesian distribution functions. In this test. at positions over the range of
coordinates of (9.20). one thousand points each of polar noise were generated and the
corresponding nonlinear noise values yc calculated by Equation (9.18). The chi-squared
test was utilized to evaluate the normality of the errors. Chi-squared was first calculated for
the original polar noise yp (the values summed for the three coordinates) and then for the
corresponding sequence of yc. The results were at first very surprising since for every
noise sequence. chi-squarmd was less for the no;nlinear sequencer c than for the original
polar sequence y!p indicating the nonlinearly transformed Cartesian noise was more nearly
(;aussian than the original polar noise. In retrospect, however, the reason for this is quite
simple in that. to the extent the linearity of Equation (9.14) is valid, the Cartesian erro.s
are simple linear combinations of the polar errors. Of course, linear transformations of
Gaussian distributions are also Gaussian (see for example. page 94 of Bendat and Piersol
(1971 )). We would therefore expect by the Central Limit Theorem (on) cit) that the Cartesian
errors. being approximately linear sums of the polar Gaussian random errors. would display a
tendency to be Gaussian also. Indeed. this is what we observe from the chi-squared tests.
This further reinforces the author's contention that the linearization provides an excellent
approximation. and given that the input polar observation errors are Gaussian the corre-
sponding Cartesian errors should also be Gaussian. (Note that it is possible to analytically
describe the true nonlinear Cartesian distribution function given polar Gaussian noise by
using the Jacobizn of the transformation. Unfortunately, the author was unable to simplify
the result into a fon that is recognizable for purposes of interpretation.)

C. UNCOUPLEI) LINEARIZED FILFER

The two Cartesian filters presented so far have resulted in ninth-order state and co-
variance systems. Upon examination of the previous filter equations. it becomes immediately
obvious that the only terms which couple the three directions are the off-diagonal term of
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the RCL matrix since the target dynamics were assumed uncoupled. If the off-diagonal
terms of RCL are assumed to be negligible (an assumption to be tested shortly), then the
system can be represented as three third-order systems (or "channels" as we call them).
This results in an enormous reduction in the computational burden if it can be accomplished
without serious degradation of performance. In fact, the computer time utilized on the
CDC 6700 for each implementation was monitored and the uncoupled filter found to be
less than one twentieth the other two.

Again. it is interesting to directly test the validity of this assumption so that we might
better understand the results of the sensitivity analysis to be presented. A very brief con-
sideration of the off-diagonal measurement covariances, Equations (9.17d-), is very in-
structive. For example. each cross term is weighted by a factor of form

a = SinXCos),

= 0.5 Sin2 X

It is very easy to set that the maximum value of a is 0.5 and its average magnitude or root-
mean-square is only 0. 125. Since the remaining factors are no greater than the diagonal
variances, this means that the cross-correlation coefficients will not exceed these values.
Further examination of the terms in parentheses is even more revealing. Notice that these
terms always algebraically subtract. thus tending to further reduce the correlation coef-
ficients. In fact. for typical values of polar sensor statistics, the cross covariances all com-
pletely vanish at a range

rs = Or/lx

where a. is the angular (bearing or elevation) standard derivation. Depending upon the
particular sensor (and other conditions), rs should usually be between 1000 and 12000
yards. with approximately 5000 yards most likely. Clearly, this range of r$ coincides with
the tracking ranges of interest for Naval gunfire control. For all these reasons, we would
expect the cross correlation of channels to be very weak and the suboptimal uncoupled
filter to be close to optimal in performance.

D. SENSITIVITY. TEST CONDITIONS AND RESULTS

In order to evaluate the sensitivity of the two suboptimal filter configurations, a set of
test conditions specifying polar track sensor statistics and targets must be chosen. Two
hypothetical track sensors were parametrically determined in Table 9. 1 A. An older
"sloppier" radar called Sensor "A" track, to only 3 milliradians and suffers from serial cor-
relation of bandwidth 1.88 Hertz due to the absence of off-axis corrected tracking. A newer
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Table 9. 1 A. Track Sensor Statistics

Sensor A Sensor E

5.0 ar (yards) 5.0

3.0 aB and UE (milliradians) 1.0

0.0 -r. (seconds) 0.0

0.3 rjj and rt: (seconds) 0.0

Table 9. 1 B. Target Characteristics

MANEUVER STATISTICS

Maneuver Frequency wm 1/20 seconds-1

Nonmaneuvering Target UNIA 0.1 yards/second2

Maneuvering Target "B" am,,= 5.0 yards/second2

NOMINAL TRAiE('TOR'i

rClosing Target r 1 7500 to 0yards

Crossing Target X =Constant = 2500 ya-rds

Y = 7500 +300 - t

VELOCITY Mach Number = 1.0

TARGET FLIGHT TIME T = 50 seconds
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"tighter' radar called Sensor "E" adds one milliradian of white noise. Both sensors track
with 5 yards of white noise in range. The targets are specified by choosing random maneu-
vers with given statistics superimposed upon a nominal straight-line target with given speed
and orientation with respect to the ship. These conditions are presented in Table 9.1 B.
Two levels of am were chosen to represent both maneuvering and nonmaneuvering targets.
Two nominal transonic target paths were chosen: ont closing directly from an initial range
of 17500 yards: and one that crosses with a point of closest approach of 2500 yards. Fifty
seconds of target track data were assumed to be supplied for estimation and prediction
purposes.

The sensitivity test results shown in Table 9.2 are given in terms of the prediction
criterion of Equation 19.8). First. consider the performance of the coupled linearized filter
relative io the optimal nonlinear filter. In Section 9.B.. we discussed and presented some
auxiliary results which indicated that the linearization approximation was quite accurate for
our application. If this linearization were perfect. the linearized coupled filter would be
optimal. We find that. indeed, using our criterion of optimality. there is essentially no dif-
ference in the performance level of the coupled linearized filter relative to that of the
optimal nonlinear filter. We also note that the performance is a .;trong function of the
sensor statistics, which of course we would expect since the accuracy of the linearization is
a function of the error level itself. The author therefore concludes that the linearized filter
is an excellent approximation to the optimal nonlinear filter.

Table 9.2. Three-Dimensional Sensitivity Results

0 (Linearized/ 0 (Uncoupled/
Track Sensor Maneuver Level Target Optimal) Coupled

A A (Low) Closing 0.994 0.956

A A ( Low) Crossing 0.994 0.961

A B (High) Closing 0.998 0.978

A B (High) Crossing 0.9985 0.993

E A ( Low) Closing 0.99984 0.978

E A (Low) Crossing 0.999996 0.995

E B (High) Closing 0.9999998 0.997

E B (High) Crossing 0 Q999996 0.9997
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Now let us consider the uncoupled linearized filter. This filter is most important since
it results in a significant computational advantage. Since the linearized coupled filter is so
close to optimal for our problem. we compared the uncoupled filter to it to measure
optimality. (Presumably. one might estimatc the criterion for this filter relative to the
optimal nonlinear filter (if desired) by calculating the product of the two values of 0 al-
though the author does not prove this.) We find that the drop in performance is more
noticeable for this case but remains within a few percent of the optimal for all cases. Again.
for the improved E track sensor. the difference is essentially negligible. The author there-
fore concludes that, due to the significant computational advantage enjoyed by the un-
coupled linearized filter and to the relatively small loss of optimality of this design. that it
is to be recommended for implementation. It is also felt that other conditions. such as
imperfect target motion modeling and inaccurate knowledge of sensor error statistics. could
result in more significant performance reduction from the optimal performance level. This
same conclusion has been reached by other researchers such as Cantrell 1973) and. in fact.
independent Cartesian filtering is presently employed in all U. S. Navy FCS for major-

caliber guns.

E. POLAR AND HYBRID FORMS

As mentioned previously, since the uncoupled ('artesian filter was the one ultimately
chosen for implementation. the details of work on the other forms will not be presented
here. A brief discussion of the polar and hybrid forms is indicated. however, since they are
both interesting to compare and contrast with the Cartesian filters.

The spherical polar sate vector is

~pD=Ir Tii B Bi B l KiIT 19.22)

The kjaetic relationship between Xr3D and x 31 can be obtained by doubly differentiating
the nonlinear transformation Equations (9.1 I an( (9.2). The dynaniie relationship is then
determined by substitution into the three-dimensional ('artesian target motion Lquations
i9.5-7). As might be expected. this manipulation is quite tedious. The resulting polar
dynarit: !q!ationc are highly nonlinear with rather strong coupling hictween coordinates.
Tile state uxtrapoh%'6i-.n ciaa Ic effected exactly however.

Unforhtately. it was not possible for tile a ;ir or Iiis as-ociates to determine ihe
exact nonlinear extrapo.!1tion for 11w error covariance. and it was ncce. .ay t: !ir.arie and
iterate again in order to construct th- optimal nonlinear polar filter. The update process in
polar coordinates is. of course. linear and po.ed no problems. Of course. as far as perform-
ance is concerned, the optimal nonlinear filters in both coordinate systems are exactly
equivalent. if one were determined to implement an optimal nonlinear filter. then ihe
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choice of coordinate system would be based upon other considerations such as computational
burden. This conclusion is essentially identical to that of Monzingo (1972) who decided
that both approaches could be made to yield comparable track accuracies.

The basic computational problem centers upon the relative degree of cross coupling
and nonlinearity (however one might define such an effect) between the nonlinear ,
step for the Cartesian filter and the nonlinear extrapolation step for the polar fiter. This
relative effect is clearly a function of the particular application and would determine tint
number of iterations required to effect convergence. For example, for lonyt-sange tracking
of reentry vehicles. Mehra ( 1971 ) found that the update nonlinearity was more severe than
the dynamic nonlinearity for the assumed conditions of that estimation p':oblem. This
could be expected since, as mentioned previously, the observation error contours are very
distorted at long ranges and the reentry vehicle dynamics does not usually involve high
angular rates. The author suspects (but did not demonstrate) that the opposite is the case
for our application. (It should be noted also that the observations with the phased-array
radar in Mehra's paper were not of angles but of direction cosines for which the nonlinearity
is different.) It is also accepted by many. including the author and Monzingo (1972). that
the independent f uncolipled) suboptimal polar filter could degrade seriously at close ranges
due to the neglect of tie '*apparent accelerations" mentioned previously.

The concept of the hybrid filter is simply an attempt to minimize the effect of the
nonlinearities and to use the best (most linear) parts from both the Cartesian and polar
filters. The state vector for this filter is mixed (hence the term "hybrid")

N1l3D =  Ir B E i i i ) T (9.23)

The only nonlinearity that appears for this filter is with the extrapolation of polar
positions since the other state variable extrapolations and the update are linear. The error
covariance matrix is still full (9 X 1 ' and must be linearized for the extrapolation step.
Additional work with this filter is t,:quired before conclusions can be made but it remains
an interesting concept. Variations on this filter have been conceptually explored and in-
clude a rotating Cartesian filter with origia naintained at the current estimated target posi-
tion and orientation such that one ax;s is aligned vith the ray and the orthogonal axis
aligned tangent to the sphere in the directions o! bearing and elevation. Clearly, additional
investigations are needed if one is to make definite conclusions as to the advantages (if ;,.y)
of these idea%.

X. SUMMARY AND RECOMMENDATIONS

This section is intended to give the ieader a brief overview of the studies, results. con-
clusions. and areas ior future work contained in this report. Section I presents the reader a
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brief introduction to the fire control problem and the basic considerations attendant to
*.front-end' (filter/predictor) design. Section 1i introduces the concepts. notation and
equations of the Kalman filter with particular emphasis on reasons for its choice in this
application and information required to construct a filter of this type.

The next six Sections (Ill-VIII) deal exclusively with modeling and paran;rInc be-
havior for one-dimensiona! filtering and prediction. The derivative r ,lynomial t..rge model
was first explored (Section !11) since it is undoubtedly the most common and familiat and
parametric behavior of a rather fundamental nature was unavailable for this simple model.
Convergence studies indicated that constant jerque and higher-order filters could not be
considered for this application-at least as the principal filter-since they take an unaccept-
able amo,,nt of time io adequately settle. Quantitative relationships of filter convergence

with polynomial order and observation data rate were determined. The problem of dealing
with a maneuvering target with unknown strztegy led us to consider the random acceleration

target model in Section IV. The author found this model particularly appealing since it
statistically recognizes and acknowledges this lack of information and enables one to directly
rmlat- the targe.' m nuvcr paran-ters (acceleration level and frcquency) to the Kalman
filter bandwidth and perf9rmance matrices. It was demonstrated that this filter converges
aster thai the constan; a..e tcration filter and. in fact. tends to display behavior somewhere

between the constant-acccleration and constant-velocity filters. This model is particularly
valuable in that it enables the user to deter-nine fundamental limitations concerning the

ability to filter ard prewct a maneuvering target path. Additional work on target motion

analysis. .3pecially from a hrev-dimcnsional point of view. is recommended.

Concepts uf divergence prevention and adaptive Kalman filtering are considered in
Section V. A discussion of divergence and the bandwidth tradeoff is followed by the devel-

opment and anlysis of the u-,c of residuL 3rialysis as a maneuver detection tool. Having
a dive gencc detection technique in hand. .wvo concepts of adaptation are developed. Tht"
advantage of the dual-bandwidth over the single-variable-bandwidth adaptive filter are
prownted along with the particular adiptive scheme iecomnended for implementation. The

dual-bandwidth concept is particularly attractive since both narrow and wide bandwidth
filters are always in operation and the adaptation algo;'ithm merely wlects the output state

v;-ctor according to *he monitored performance of eac:. Additional work relating to
advanced adaptation techniques such as multi-bandwidth parallel or cascade filter banks
with hypothesis iesting or residual analysis and i. .,e. :,. my :.daptive designs are
strongly :ecommenti-1.

The poblc: of. crijily correlated observation w:, --rs is treated in Sectior, VI. A -or-
relation. model and modified Kalman filter and ensitivity algorithm arc developed, and
results pertaining to otb-ervation error stalistics are presented.

105t



It would probably not have C¢in possible to actually implement these Kalman filter
designs on a real-time, fixed-point vini-computer if it were not for the prefilter and square-
root covariance techniques developed iv Scion Vii. The data compression work in partic-
ular is critical, and more advanced state-of-the-art techniques should be explored in the
future since the payoff in reduced computation is so great with a successful design.

The predictor, of course, is the ultimate product c *, , m front-end (target sensor
plus the filter) so a special section (Viii) was ded.:iyi ", ,i'," ! :m of prdict,-r design.
After demonstraving that the minimum variance prei.s • :. *y the transition matrix.
the sensitivity of the predictor to the choice of acceleratt,..t ,me constant and prediction
accuracy for the limiting case of perfect filtering was discw A1.

Finally. in Section IX. the results for the one-dimer- ' "ter work were tied to-
gether into the three-dimensional filter design. After devei . vng the optimal nonlinear filter
as a standard, it was shown that the linearized observation eiror covariance approximation
is quite accurate for our purposes. and that. by paying only a small cost in performance
degradation by neglecting the cross-correlation terms, the three-dimensional filter can be
decoupled with a dramatic reduction in required computational load. It is recommended
that additional work on hybrid and polar filters be performed along with the target motion
an;s!ysis problem with the objective of further performance improvement foremost in mind.

The final ve,.wion of the FORTRAN model incorporating all the features discu! ,cd in
this report is foun1 in the Appendix.

While it is felt that many improvements, even of a fundamental nature. cap be asade 1o
this filter design. this model represents the best that the author, with the aid and advice of
many associates. could achieve to date. It i believed- or at leas! fervently hoped-that this
model represents an advance over existing filter/predc;ores currently employed for weapons
control prpses.
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APPENDIX A

Listings of Compute1 Program
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RANPUM 1- T:s subroutine generates a Gaussian random number with zero mean and unit
standard deviation. It uses uniformly distributed random numbers, generated by the
CDC system routine RAN F, to compute a normally distributed number.

CORNUM - This subroutine generates the ith value of a sequ.:ce of exponentially autocor-
related Gaussian random numbers with zero mean. The output of this algorithm,
modeled as a first-order Marko prcces., Is equivalent to a low-pass filter with cutoff
frequency = l/(2irr) Hertz driven by white Gaussian noise. The sampling frequency is
automatically adjusted to satisfy the Shannon sampling theorem. Additional details
anid d-,cumentation of a similar algorithm can be found in Blalas (1967).
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SUBROUTINE CORNU4(XNOISESI6HLTAUOELTAT, INRIOSIGAWI
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C HERTZ DRIVEN 0Y Wt-ITE G*'USSIAN NOISE
G XHOISE -OUTPUT NEW RANDOMI NUV.ER - INPUT OLD VALUE
C SIGPA 3TANOA- D DEVIATION OF OUTPUT SEQJENCE
C TAU - EXPONENTIAL AUrOCOR'RELA;ION TIME CONSTANT
C OELTAr - COhST~ftT SAMIPLING !NTEkCVAL
C I - INDEX OF St WENCE I(#GE. 1$
C THE FOLLOkING QUANTITIES APE C04PUTEO 1.41rIALLY 11 2 1) AND MUIST BE
C STOREi) IN THE CALLING ROUT!%E ro USE "NEN I oG~o I
C N - FACTOR~ OF' INC'RiAS-_ Of EFFjCTIVE SANFLING
C R"%) - CORREL-ITION COEFFICIENT AT EFFECTIVE SAMPLIN4G RATE
C SIGMA% - STAN4DARD OEVI&TIGh OF WHITE-NOISE INFIT
C INITIALIZE GENERATOit

IF (I -OT* 11 Gu TO 1
CALL RANDO" (WMift 9 11xNOIScE z SAGP$!4m~NuWo

C FIND SANPLINC TIME To SATISFY SWLNNOtt SA"PLING TME32ilM
IF((3(LT&TiTAU) G&T. MC.) GO TO 3
N z .f1C.*0fLTCTTAU
RHO StEXP(-OELTATltTAU'FLuAT(NP))

R:TU*Nt
3 C('NTIN4UE

"tI

31I4AW SIGMA

I CURTINUE

CALL 0(AtUpI
XWOISE ,i.hZEStLNtNU

2 CONT INUE
RETURN
END



CORKAL - This subroutine is the general (matrix) version of the Kalman filter which has
been restructed to accept serially correlated measurement error. The model andJ
algorithm development are presented'in Section VI. The mat.-x equations which
this algorithm computes are shown in Table 6.2.

C AST L"'P)ATE - 1 01)VV"4ER 1973
C ;&NEVAL XALMAt* FTLTER C VCLE FOR Lr*rL SvTr- N111 AUTOiCORCL5TS

C PFASROVNT cr s - TG.PuTk- rtpt AuT TMC-) TI iTNFrT
C OUTP~UT AT T1PK)M - -41RIZCEq AW **CT QtDEFINI O EXCE~ FSQ~~TWIE-GVN NU TT~ KII~ OT' WHE~

-TCAPNS1
7 TCKt4 ATQIx - lP.TKKI

C F(N) - rTE-1jIl-rIC CO-OCING Vrf'-Or - 1.FUT(K-1*
C P(494E) - ERROP C0VT,'-C~ "ATTX - I'JPU1t-z/K-I - CUT'-UT(K/K1
C G(404) - CiOCSS 40 S7 MATDI X - TUCUT(I(-1)
C RN1 - 'EASURC4 4T --R20 4IATqIX - .ds!TL *401zE OTTON - ImPuT(K-if
C H0100I - % 3>E;V !?Ot~ N"ATIX - CUR~N' - p4NIJT(C)
C HILN'043 O(CSf'AT!O% OL1'OIX - LI.ST TIM9E - MCK-L) - !NPUT(K-1)

- UITnCV23FL4TlO?, TVANSITT01 M4T~lw - INPUJT(K,(-1)
C icqj - v'o - 14-UTIKI

C Ei~HJ ~h'C 0 a(K(.<-11 Vi.4F Tw-- ADS ioI EsrouAL
C jhPUT(K~-Z) - nUij'UT(K)

Z IC(?JN) - C-2% N5T'tTY - C;Lf ULITE:) - 0119OUT(C)
-1Z or

-SIZE IF z
C TOU OUTOUT s4:!'- (SET TO I TO 3U"* ALL T4TE4NAL OUTPUT)

C j)TrL -(!,VIj rUST of"T XCEE1 (13971 - 2 -' jTufi #Y)rSt Cla'1GE TkV
C 3IIONIS Lj* T-f4' IOQ'(T'4,, S#t~r VIC TML -,vEXT-PC-LA$TI hAfU4WE
C OF -4ATK.(t q - C 4

J I "i 4 1 O t) 9 0-1 (, 9#0I ,ET ) P to n) ^dgt!D)@1)

I D=

C'O I L 1

C~~~~~ El,9*~dSV !PSI

I-C I L

DO 2
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